A Compendium of PCR Primers for mtDNA, Microsatellite, and Other Nuclear Loci for Freshwater Turtles and Tortoises

TAG N. ENGSTROM¹, TAYLOR EDWARDS², MATT F. OSENTOSKI³, AND ERIN M. MYERS⁴

¹Department of Biological Sciences, California State University at Chico, Chico, California 95929-0515 USA [tengstrom@csuchico.edu];

²Arizona Research Laboratories, Human Origins Genotyping Laboratory, University of Arizona,

Bio5/Keating Building room 111, Tucson, Arizona 85721 USA [taylore@email.arizona.edu];

³Department of Biology, University of Miami, Coral Gables, Florida 33124-0421 USA [mosentoski@bio.miami.edu]; ⁴Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa 50011 USA [emyers1@iastate.edu]

ABSTRACT. – Molecular markers have proven to be a powerful tool for research on turtles. In particular, the application of the polymerase chain reaction (PCR) has increased the availability of molecular technologies while decreasing the cost. However, the cost, time, and expertise associated with developing and testing primers for a particular species can still present a significant barrier, especially to researchers less experienced with molecular methods. In this paper we provide the primer sequence, genomic location, and taxa for 202 PCR primers spanning the entire mitochondrial genome. We also report primers for 11 nuclear coding genes and introns. Finally, we provide primer sequence, amplicon size, and number of observed alleles for 181 microsatellite loci from all major clades of living turtles. We hope that this nearly comprehensive compilation of freshwater turtle and tortoise PCR primers can reduce some of the initial difficulties for beginning turtle geneticists and further facilitate research in existing labs.

KEY WORDS. - Reptilia; Testudines; turtle; PCR; primer; mtDNA; nuclear DNA; microsatellite; STR

The power and utility of genetic tools for the study of turtle biology and conservation is evidenced by the extensive and rapidly growing literature on the past, present, and future use of such molecular tools reviewed in this volume. The increasing availability and decreasing cost of molecular technologies, specifically the polymerase chain reaction (PCR), is making genetic analysis more accessible to researchers. However, the cost, time, and expertise associated with developing and testing primers for a particular species can still present a significant barrier, especially to researchers inexperienced with molecular methods. In this paper we hope to reduce some of the initial difficulties or frustration for turtle biologists by providing a thorough compilation of published (and some unpublished) information on PCR primers developed specifically for turtle studies.

We have organized our discussion of molecular markers into three categories: (1) mitochondrial DNA, (2) nuclear loci (including both protein-coding genes and introns), and (3) microsatellite loci (Simple Tandem Repeats). For each marker type we provide a brief description of its strengths and limitations, and the kind of study for which it may be most appropriate. In Tables 1 and 2 we list each primer's region (gene or locus), name (or names), primer sequence, original reference, and a selective (non-exhaustive) list of citations for studies that have used that primer. Because some primers have been used on multiple taxa, we have also included a list of species (when possible) or a summary of the major

clades in which the primers have been successfully applied. For the mitochondrial primers (Table 1), we include the orientation and 5' primer position relative to the published Chrysemys picta mitochondrial genome (Mindell et al., 1999) along with a genomic map (Fig. 1A-E) to compare primer coverage and provide estimates of predicted product size of different primer combinations. Due to space limitations not all primers are depicted in the figure. We encourage readers to consult the figure to find primers in the region of interest and then reference the tables for a more complete listing of available primers in that region and taxa in which those have been used. Our summary of primers focuses on freshwater turtles and tortoises, and largely excludes the extensive literature on marine turtles. However, because of the demonstrated inter-species cross-amplification of many microsatellite loci, we have also included a nonexhaustive list of marine turtle primers. Also for the microsatellite markers, we have included an indication of the expected size and level of variation of the amplified product in the target species and a list of non-target species in which the locus has been tested and failed to amplify.

A paper of this nature (reporting a set of available primers) will already be out of date on the day it is published. This is unavoidable in a hard copy publication, but can be avoided by establishment of an open access database for turtle researchers to report their primers as they are devel-

125

oped, provided of course that researchers are willing to post their new primers or the application of existing primers to new species on the database. We have established such a database in a companion website for this publication, which can be accessed at http://www.csuchico.edu/biol/personnel/ engstrom/turtleprimers.htm. We hope that compiling this information in a single reference will aid in the rapid diffusion of information on new, useful primers and new applications of existing primers. We hope that this will facilitate research and accelerate progress toward understanding the phylogeny and population genetics of turtles, by guiding researchers to molecular markers that will (1) be applicable their particular study animal, (2) harbor levels of variation appropriate to their question, and (3) be comparable to previous studies. However, to ensure that appropriate credit accrues to the researchers who have performed the hard work of developing markers, we remind anyone using primers listed in this publication or the companion website to cite the primary references for those primers or to contact those who developed previously unpublished primers for updated citation information. We reiterate that publications by the original developers of the molecular markers should be considered the primary references, NOT this summary report or its companion website.

Mitochondrial DNA

Mitochondrial DNA (mtDNA) sequence data have been and continue to be particularly informative in both in phylogeography and in systematics (Hillis et al., 1996). The mitochondrial genome has a highly conserved gene content and gene order (Boore, 1999, but see Parham et al., 2006a,b), lacks introns, lacks significant recombination (Avise, 1994, 2004; Moore, 1995; Sunnucks, 2000), and is present in multiple copies per cell, thus rendering the acquisition and analysis of mtDNA sequence data relatively easy and straightforward compared with the more complex nuclear genome (see below). The overall rate of nucleotide substitution in the mitochondrial genome is relatively rapid (Brown et al., 1979), providing a rich source of variable characters. However, this organelle also offers a mix of fast evolving genes, useful for studies of recently diverged lineages (e.g., within species, among closely related species), and slowlyevolving genes suitable for studies of more ancient divergences (e.g., among genera or families [Graybeal, 1994]). Mitochondrial DNA has a small effective population size relative to the nuclear genome, resulting in a shorter average coalescent time (Moore, 1995), albeit with a high variance (Hudson and Turelli, 2003). This combination of attributes renders mtDNA useful for a wide variety of genetically based studies. However, as a maternally-inherited, single locus, mtDNA provides a somewhat limited perspective on the evolutionary and ecological history of a species. The demonstration of hybridization (Parham et al., 2001; Stuart and Parham, 2007; Spinks et al., unpubl. data) and potential differences in male and female behavior (FitzSimmons et al., 1997), for example, may often require nuclear data to test mtDNA-based hypotheses. Thus, while mtDNA has provided and will continue to provide an invaluable tool, it is also important to identify independent markers that complement those in the mitochondrial genome.

The 202 turtle mtDNA primers listed in Table 1 have been used to amplify and sequence all regions of the turtle mtDNA genome, including all 13 protein-coding genes, 22 tRNAs, 2 rRNAs, and the control region/d-loop. The most frequently used genes in deep phylogenetic studies are the slowly evolving 12s rRNA (e.g., Shaffer et al., 1997), and moderately evolving Cytochrome b (Cytb) (e.g., Shaffer et al., 1997; Spinks et al., 2004). Cytb, NADH 4 (also commonly abbreviated ND4) and other protein coding genes have been most useful for studies among closely related species (e.g., Caccone et al., 1999a,b; Engstrom et al., 2002; Feldman and Parham, 2002) or for phylogeographic studies within species (e.g., Starkey et al., 2003; Spinks and Shaffer, 2005). The control region is widely used in population and intraspecific level studies because of its high rate of mutation (Stewart and Baker, 1994; Starkey et al., 2003; Pearse et al., 2006); however, some studies have noted equal or greater levels of variation in protein coding genes (Spinks and Shaffer, 2005).

Nuclear Loci

Because of the recognized limitations of mtDNA, increased attention is being paid to the nuclear genome as an additional, independent source of data for phylogenetic, phylogeographic, and population genetic analyses (e.g., Bruford and Wayne, 1993; Groth and Barrowclough, 1999; Hare, 2001). The three sources of nuclear data most commonly used include size polymorphisms at microsatellite loci (discussed below), and sequence data from nuclear protein-coding genes and introns. In contrast to mtDNA, nuclear protein-coding genes and introns tend to evolve more slowly (Prychitko and Moore, 1997, 2000; Groth and Barrowclough, 1999; Birks and Edwards, 2002; Caccone et al., 2004; Engstrom et al., 2004; Fujita et al., 2004), making them less prone to excessive homoplasy-a common problem among mitochondrial genes over deeper divergences. Nuclear introns have the further advantage of being free from many of the evolutionary constraints imposed on protein-coding sequences, resulting in little base compositional bias, relatively low transition/transversion ratio, and little among-site rate heterogeneity (Armstrong et al., 2001; Prychitko and Moore, 2003; Fujita et al., 2004). One disadvantage of nuclear DNA is that the slow rate of evolution, which minimizes homoplasy on long timescales, can also reduce variation on shorter timescales (Birks and Edwards, 2002). This characteristic can limit its utility in phylogeographic and population genetic studies of turtles (Spinks and Shaffer, 2005).

Because they can be more difficult to develop compared with mtDNA loci, relatively fewer primers have been de-

Figure 1. The five panels depict map of 5' position and orientation of turtle primers listed within Table 1 relative to the sense strand (L) and loci of the *Chrysemys picta* mitochondrial genome (GenBank accession AF069423).

scribed for nuclear protein coding genes and introns. In Table 2 we list primers for 6 introns and 3 protein-coding genes. Intron sequence has shown great utility in interspecific phylogenetics (Engstrom et al., 2004; Fujita et al., 2004), but due to their lack of functional constraint they can be difficult to align across deep phylogenies (Fujita et al., 2004; but see Loytynoja and Goldman, 2005) Proteincoding genes have proven useful in interspecific phylogenies at many levels (Georges et al., 1998), and will be crucial in testing the location of the root of the turtle tree (Krenz et al., 2005; Near et al., 2005) and in understanding the placement of turtles relative to other amniotes (Hedges and Poling, 1999). Because nuclear introns and protein coding genes are bi-parentally inherited, detection of heterozygotes is a useful tool in the identification of interspecific hybrids (Stuart and Parham, 2007; Spinks, unpubl. data). Another less-explored source of nuclear gene data is the rapidly growing field of developmental genetics. Many genes have been cloned from complementary DNA (cDNA) libraries constructed for studies of sex determination (e.g., Valenzuela et al., 2006), morphological development and gene expression (Chien et al., 2005, 2006) and chromosome evolution (Kuraku et al., 2005, 2006; Matsuda et al., 2005). Complimentary DNA is synthesized using the enzyme *reverse transcriptase* to make DNA copies of all of the mature mRNA transcribed in a tissue sample. Although primers for detection of genes identified in these cDNA libraries have been published, we have decided not to include this exten**Table 1.** Primers currently available for amplification of mitochondrial loci of tortoise and freshwater turtles. Each primer is listed by locus, strand orientation (O*) (H = heavy, L = light), and 5' position relative to the *Chrysemys picta* mitochondrial genome (GenBank accession AF069423) except in cases where the primer does not align with *Chrysemys*, in which case the primer is aligned either with mitochondrial genomes of *Dogania subplana* (NC002780) and indicated with a "D" or *Pelomedusa subrufa* (AF039066) and indicated with a "P". No location is given for several primers designed for amplification of the control region in kinosternid turtles, which did not align well with other turtle genomes. Groups of taxa successfully amplified and associated references are listed in the final columns. Contact information for unpublished primer sequences: TNE (tengstrom@csuchico.edu), NNF (Nancy.FitzSimmons@canberra.edu.au), MRJF (mf@txstate.edu). Key to taxa: CR = Suborder Cryptodira, Chely = Family Chelydridae, TE = Superfamily Testudinoidea, Test = Family Testudinidae, Geo = Family Geoemydidae, Emy = Family Emydidae, Derma = Family Dermatemydidae, Kino = Family Carettochelyidae, Piamily Platysternidae, C = Superfamily Kinosternidea, Chelo = Family Chelonidea, Pelo = Family Dermochelyidae, PL = Suborder Pleurodira, Cheli = Family Chelidae, P = Superfamily Pelomedusoidea, Pelo = Family Pelomedusidae, Podo = Family Podocnemididae.

Primer Location	0*	Pos.+	Primer Name	Primer Sequence (5'-3')	Orig. Ref.	Taxa	References Citing Primer
tRNA-Phe	L	19	L1	AAAGCACGGCACTGAAGATGC	135	Geo	
tRNA-Phe	H	28	KNPH 35R	GCCGTGCTTTGATATAAGCT	148	Kino	
tRNA-Phe	Н	50	GT12STR	ATCTTGGCAACTTCAGTGCC	28	Test	23, 27
tRNA-Phe	H	50	Phe-H26	TACCCATCITGGCAACTTCAGTGCC	119	Test	
12S rRNA	H	128	DL3Rev	AATATTIGAGTIGICGIGGG	15	Test	
125 rRNA	Н	120	H10	TTCACTGGTTATGCAGATACTT	140	Geo	
12S rRNA	L	497	N/12SA	AAACTGGGATTAGATACCCCACTAT	120	TE	150, 154
12S rRNA	L	491	L1091	AAAAAGCTTCAAACTGGGATTAGATACCCCACTAT	82	Geo, Test, Cheli	4, 25, 27, 74, 75, 90, 98, 118, 147, 163, 164, 172
12S rRNA	L	501	LGL 284	TGGGATTAGATACCCCACTAT	33	Test	114
12S rRNA	L	508	12SXLF	GATTAGATACCCCACTATGCTTAG	153	Geo	151
12S rRNA	H	582	TCR2	GCICGIAGIICICIGGCGG	113	Podo	151
125 rRNA	H	939	P/12SB	GAGGGTGACGGGCGGTGTGT	130	TE	150 154
125 rRNA	H	947	H1478	TGACTGCAGAGGGTGACGGGCGGTGTGT	82	Geo, Test, Cheli	4, 25, 27, 74, 75, 118, 147, 163, 164, 172
12S rRNA	L	1058	L2	AAAGCATTCAGCTTACACCTGA	135	Geo	111, 103, 101, 172
16S rRNA	Η	1255	H1	TTTCATCTTTCCTTGCGGTAC	135	Geo	
16S rRNA	L	1639	L2606	GGCCTAAAAGCAGCCACCTGTAAAGACAGCGT	70	Geo	74, 75
16S rRNA	L	1954	LGL 381	ACCCCGCCIGITTACCAAAAACAT	16	Emy	07 00 110
165 rDNA	L	1958	105af/AK M80 (L)		120	DI	27, 28, 118
16S rRNA	H	2002	LGL 283	TGATTATGCTACCTTTGCACRGT	33	Test	114
16S rRNA	L	2124	L3	GTCTCTTACAAATAATCAGTGA	135	Geo	111
16S rRNA	Η	2207	H2	AAGTTCCACAGGGTCTTCTCG	135	Geo	
16S rRNA	Η	2485	M90 (H)	CCTTAATAGCGGCTGCACCATTAGGA	63	PL	
16S rRNA	H	2560	16Sbr/BR	CCGGTCTGAACTCAGATCACGT	120	Test	27, 28, 90, 118
16S rRNA	H	2562	H3056	CICCGGICIGAACICAGATCACGIAGG	/0	Geo	74, 75
ND1	п I	2369 P2457	Podmt?	TTGCTGTAGAATCTGACATCC	10	Podo	
ND1	H	P3549	Tur d-loop R	GGAAGTGTATATGAAACCTGGGT	174	Pelo	
ND1	Ĺ	2899	ND1F	GGMTAYATACAACTTCGAAAAGG	153	Geo	
ND1	L	3169	L11	TCCGGTTGAGCTTCAAACTC	135	Geo	
ND1	Н	3340	H3	ACTATTCCTGCTCAGGCTCCG	135	Geo	
NDI tDNA Mat	H	3829	NDIR LCL 562	GGITTTAGCCICIATTATICACCC	153	Geo	
ND2	L I	3928 7377	LGL 302		114	Geo	
ND2	H	4506	H11	GTAGTTGGGTTTGGTTTAGTCC	135	Geo	
ND2	L	4842	1613-ND2	CTAAGCCTATTCTTCTA	149	Emy	
ND2	L	4923	CS2	GGACGCCATAACACAAT	167	Chely	
ND2	Н	5084	ND2R	GAGGTTCTATCTCTTGTTTGGGGGC	153	Geo	04 106 150
tRNA-Tyr	L	53/9	L-turtCOI		157	Geo	24, 126, 153
CO I	L	5390	L-turiCOIC	ΤΑCCΙGIGATITIAACCCGIIGAT	137	Geo	24, 120, 155
COI	Ľ	5424	LCO-1490	GGTCAACAATCATAAAGATATTGG	51	Geo	45, 125
COI	H	5436	912-COI	GTGGTTGGTTGAGAATAATCA	149	Emy	,
COI	Η	5486	H4	ACTATTCCTGCTCAGGCTCCG	135	Geo	
COI	Н	5839	H-COIint	TAGTTAGGTCTACAGAGGCGC	157	Geo	24, 126
COL	L	5956	L-COlint M72 (L)	TGATCAGTACITATCACAGCCG	15/	Geo	24, 126
COI	H	6128	M72 (L) I GL 452		114	PL Test	
COI	H	6131	HCO-2193	TAAACTTCAGGGTGACCAAAAAATCA	51	Geo	45, 125
COI	H	6265	H-turtCOI	CCCATACGATGAAGCCTAAGAA	157	Geo	24, 126
COI	Η	6272	H-turtCOIc	TGGTGGGCTCATACAATAAAGC	157	Geo	24, 126
COI	Н	6326	H-turtCOIb	GTTGCAGATGTAAAATAGGCTCG	157	Geo	24, 126
COL	L	6337	L12	CICATCCCCAACAGGAGTAAAA	135	Geo	
COI	п	6570	М/З (П) Н5		135	PL Geo	
COIL	Ľ	7594	I.6	AAACAGACGCARTCCCAGGCAC	135	Geo	
COII	Ĥ	7795	HI2	GTCATCCTGTTTAGCTTCTCTAG	135	Geo	
ATPase 8	L	8659	L13	GCCTCTACCTACAAGAAAC	135	Geo	
ATPase 6	Н	8766	H6	GTTATTAGTAGTTGCTGCTGTGC	135	Geo	
COIII	L	9038	DW 2000	ACAGGCGTAATCCTACTAA	168	Trio Trio	
COL	L	9209	1C0X5_551F	CTTTGGGTTTGAAGCAGCTCC	TNE	Trio, Geo	
COM	Ľ	9386	L10647	TTYGAAGCMGCMGCMTGATACTG	106	Emv	107
tRNAGly	Ĺ	9481	New Gly	ATAAGTACAATGMYTTCCA	5	Test	20

tDNA Gly	T	0/182	Poou GlyE		TNE	Trio	
tDNA Chu	T	0402	TChrE1		TNE	Trio Cao	
tRNA-Gly	Ļ	9483	IGIYFI	IAGIAYAARIGACIICCAAICA	INE	Irio, Geo	
tRNA-Gly	L	9485	L7	AGTACAAATGACTTCCAATCA	135	Geo	
tRNA-Gly	L	9492	TGlyF2	TGACTTCCAATCAYTMAGTTT	TNE	Trio, Geo	
NADH3	Н	9717	H13	GAAGAATCGAATTGAGAATGG	135	Geo	
NADH3	Н	9884	H11100	TCTGCYCAYTCTARKCCTCCYTG	106	Fmv	107
tDNA Area	T	D0024	ArgE1	CATTGATAAAACATGGTTACCC	TNE	Trio	107
INNA-AIg	T	0020	Algri		TNE	THU TT:	
tRNA-Arg	L	9929	ArgF2	TAAAACATGGTTACCCTATGACACC	INE	Irio	
NADH4	H	D10286	Raeu ND4-42R	GTATCATATGIGIGITGGTTIGG	TNE	Trio	
NADH4	Η	10239	ND4_43R	GGTTTAGGTTTTGTAGGTGGCTTG	TNE	Geo	
NADH4	Н	10483	T ND4 288R	TAGGATTATTAGTGGAGTAAGTCAGC	TNE	Trio, Geo	
NADH4	T	10508	1_10 1_200R	GAACCCCTATCACGAAAACG	135	Geo	
NADII4		10,000	117	TTTCATUACUAAACU	135	Cee	
NADH4	п	100//	П/		155	Geo	2 0 11 15 15
NADH4	L	10886	ND4	CACCTATGACTACCAAAAGCTCATGTAGAAGC	5	Emy, Geo, Test	20, 41, 45, 46
NADH4	L	10892	ND4/ ND4_672(f)	TGACTACCAAAAGCTCATGTACAAGC	43	Emy, Trio	42, 44, 152
NADH4	L	10910	L-ND4	GTAGAAGCCCCAATCGCAG	157	Geo	24, 126, 153
NADH4	I	10918	L-ND4c	CCAATCGCAGGATCAATAATC	157	Geo	24 126
NADIA	ц П	10021	L-IND-IC Nom2	TCCACCTTCTACCTCDCCTTT	157	Test	24, 120
NADH4	п	10921	Nap2			Test	20
NADH4	L	11000	Turtl	GATCCICIAICAAAAACACI	MRJF		
NADH4	L	11079	ND4 #2	TACGACAAACAGACCTAAAATC	5	Test	96
NADH4	Н	11389	H-ND4int	GGTTAGCTCTCCTATTAGGTTGAT	157	Geo	24, 126
NADH4	T	1153/	L_ND/int	ΔΟΟΓΑΤΔΟΔΟGΔGΔΔΟΔΤΟΤΔΟΤ	157	Geo	24, 126
INADIH		11/74			137	000 T.	24, 120
tRNA-His	Н	116/4	Hist-ND4	CCTATTTAGAGCCACAGICTAAIG	43	Ino	42
tRNA-His	Н	11675	Hist	CCTATTTTTAGAGCCACAGTCTAATG	44	Trio	
tRNA-Leu	L	11772	L8	AGGATAGAAGTAATCCAATGG	135	Geo	
tRNA-Leu	I	11775	LGL 763	AATAGTTTATCCRTTGGTCTTAGG	34	Test	114
tDNA Lou	ц	11001	LOL 705	ATTTCCACCAACCCTTAATCC	157	Goo	24 126
INNA-Leu	п	11021	H-Leu2		157	Geo	24, 120
tKNA-Leu	н	11836	H-Leu	ATTACTITIACTIGGATTIGCACCA	157	Geo	24, 126, 153
tRNA-Leu	Н	11837	Leu	CATTACTTTACTTGGATTTGCACCA	5	Geo, Test	20, 45, 46, 96, 125
NADH5	L	P11901	Podmt3	TCACAGACATAACCATAAGCAC	151	Podo	
NADH5	й	11056	H15	GCTCTTTTTACCCCTCTTTTTC	135	Geo	
NADID	11 T	10454			155	UCU F	***** 22 * 4 7
NADH5	L	12454	ND5_619F*	ACCACGITIAGGITCATITICATIAC	45	Emy	*"Leu" in 45
NADH5	L	12812	L16	CATACACGCCTTCTTTAAAGC	135	Geo	
NADH5	Н	12899	H8	TATCTTTCGAATTGCTTGTTC	135	Geo	
NADH5	н	13/188	ALD-DI BRev	ACGATGTGCAGTGGGAGTGGTTG	110	Test	
NADII5	11	12500	ND5 1755D		TNE	Tuin	
NADH5	н	13390	ND5_1/55K	AGATTAAGGAGATTCGGTGGAG	INE	1110	
NADH6	L	14118	ND6 346F	GAATAAGCAAAAACCACTAACATACCCCC	44	Trio	
tRNA-Glu	L	14349	L14724	CGAAGCTTGATATGAAAAACCATCGTTG	105	Emy, Test, Geo	4, 76, 87, 88, 104, 114
tRNA-Glu	L	14358	GLU	TGACATGAAAAAYCAYCGTTG	116	Test	25.118
tRNA_Ghu	ĩ	1/358	Gludg/GLUDGE/A/	TGACTTGAARAACCAVCGTTG	120	CRPI	7-9 27 28 14 15
uxivA-Olu	L	14556		IOACITOAARAACCATCOTTO	120	CK,I L	7-9, 27, 20, 44, 43, 90, 110, 150, 154
	_		Forward 14/24				89, 118, 150, 154
tRNA-Glu	L	14368	CytbG	AACCATCGTIGTWATCAACTAC	154	Emy, Geo, Test	36, 77, 90, 103, 153
tRNA-Glu	L	14369	L9	AACCACCGTTCTATTCAACTA	135	Geo	
tRNA-Ghu	L	14370	L14735t	CCATCGTTGTAATCAACTAC	76	Geo	
tDNA Chu	ц	1/201	LCL 764	TTACAACCATCCTTTTTCATDTCA	24	Test	114
IKINA-Olu	п	14301	LUL /04		54	Test	114
Cytb	L	14462	M1-a	CIUCAGUUUAIUUAAUAIUIUAGUAIGAIGAAAU	60	Test	
Cyt b		14462	mt-a-neu	CTCCCAGCCCCATCCAACATCTCAGCATGATGAAACTTCG	56	Geo	
Cvt b	L	14462	L14841	AAAAGCTTCCATCCAACATCTCAGCATGATGAAA	82	Emv. Chelv	1, 78, 138
Cyth	T	14471	B/Cyth1	CCATCCAACATCTCAGCATGATGAAA	120	TE	1 94 150
Cuth	T	14472	Economic 14941		120	Test	7.0
Cytb	L	14475	Forward 14641		0	Test	1,9
Cyt b	L	14476	mt-A	CAACATCICAGCATGATGAAACTICG	93	Geo, Emy	1, 13, 14, 91, 92, 144
Cyt b	L	14478	Forward 14848	CATCTCAGCATGATGAAACTTCGGA	8	Test	7,9
Cvt b	Η	14532	Reverse 14854	TGTAGGATTAAGCAGATGCCTAGT	8	Test	7.9
Cyth	Н	14513	H16	CTAATAGTGATCCGAAGTTTCAT	135	Geo	
Cyth	T	1/581	C / 14046	ACTAGCATTCTCATCAGTAG	150	Test	7.0
Cytu	L T	14,01	C/ 14940		150	TCSL	1-9
Cytb	L	14612	D	CGAGAIGIIAAIAACGGCIG	150	IE	
Cyt b	Н	14635	Reverse 14957	AAGICATCCGTATTGTACGTCTCG	8	Test	7,9
Cyt b	Η	14641	Reverse 14966	TCGGATAAGTCACCCGTACTG	8	Test	7,9
Cvt h	L.	14658	E	GCGCCTCATTCTTCTTTATCT	150	TE	
Cyth	ī	1/678	Eorward 15045	TCCATTTACCTCCAVATVGCCCG	150	Test	7.0
Cytu	L	14070	101ward 15045		150	TCSL	1, 7
Cytb	L	140/8	F/CB94It	IGCATCIACCITCACATIGGMCG	150	IE	44
Cyt b	Н	14723	Reverse 15048	GGTAAGAGCCGTARTAAAGTC	8	Test	7,9
Cyt b	L	14792	mt-C	TAYGTCCTACCATGAGGACAAATATCATTCTGAGG	170	Emy, Geo	11, 66, 91, 171
Cvt b	L	14804	Primus	TGAGGCCAAATATCCTTCTGAGGTGCAACCG	45	Emv	
Cyth	T	1/1805	mt c2	GACGACAAATATCATTCTGAGG	13	Geo	
Cith	T	14003	C C		150	TE	
Cytb	L	14604	0	TUAUUACAAATATCATTCTUAUUUUUTUCAU	150	IL	
Cyt b	Н	14824	Reverse 15145	TCAGAATGATATTTGTCCCCATGGT	8	Test	7,9
Cyt b	Η	14827	mt-B	ACCTCAAAAGGATATTTGTCCTCA	14	Geo	
Cvt b	Н	14827	CB2-3'/15149/"T"/	CCCTCAGAATGATATTTGTCCTCA	121	Emv. Test.	9, 14, 27, 28, 44, 89,
-)			Cyth2			Trio	94 150
Crth	τī	1/02/	Deimana ann		45	Emm	91,150
Cyru	11	14034	1 11111US-1CV		43	Chase	
Cytb	Н	14836	no name(1)	AACIGCAGCCCCICAGAAIGAIAITIGICCICA	138	Chey	
Cyt b	Н	14837	H15149	AAACIGCAGCCCCICAGAATGATATTTGTCCTCA	82	Emy, Test	4, 14, 78, 87, 88
Cvt b	Н	14837	H15149	TAACTGTAGCCCCTCAGAATGATATTTGTCCTCA	76	Geo	
Cyth	н	148/13	mt-B	TTGTGATTACTGTAGCACCTCAAAATGATATTTGTCCTCA	170	Emv Geo	14 66 91 171
Cyth	ц	1/950	TestudDi3	ACTACCTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	12	Geo	1,00,71,171
Cyru	п 77	14050	I COMUNIO		15		
Cytb	Н	14852	H1519/	CCGATATAAGGGATTGCTGA	76	Geo	
Cyt b	L	14912	CB534f	GACAATGCAACCCTAACACG	44	Trio	
Cvt b	L	14995	Rush	TTCCTACATGAAACCGGATCAAACAACCCAAA	45	Emv	
Cyth	T	14006	Н	TTCCTWCACGAAACAGGNTCAAACAA	150	Test	
Cuth	L T	15000	MT a commo		100	Tost	
Cytb	L	15009	wii-c-emys		60	rest	14.06 77.407
Cyt b	L	15011	TCR1/CytbJSi	GGATCAAACAACCCAACAGG	113	Emy, Geo, Test,	14, 36, 77, 103,
						Podo	151, 154
Cvt b	Н	15027	Rush-rev	GTTGGGTTGTTTGATCCGGTTTCATGTAGAAA	45	Emv	
Cyth	н	15030	I	CCTGTTGGGTTYTTTGAKCC	150	TE	
Cuth	11	15000	CuthIce-	COTCTTCCCTTCTTTCATCC	150	Emy Cas T+	26 77 102
CyLU	п	12020	Cymissi	CIUIIUUIIUUIIUAICC	154	Entry, Geo, Test	50, 77, 105

Cvt b	L	15050	mt-D	AAAATCCCATTCCACCCCTACTACTCCACAAAAGA	170	Emv. Geo	66, 91, 154, 171
Cvt b	Н	15066	CB649r	GGGTGGAATGGGATTTTGTC	44	Trio	,- , - , -
Cvt b	L	15089	Mau-F	CTAGGCCTCATCTTAATACT	56	Geo	
CvtB	Η	15149	Ri-neu	GTGAAGTTGTCTGGGTCTCCTAG	56	Geo	
Cyt b	L	15171	CB791f	CACCMGCYAACCCACTATC	44	Trio	
Cyt b	L	15206	mt-e	AAACCAGAATGATACTTCCTATTTGC	13	Geo	
Cyt b	Η	15231	mt-E	GCAAATAGGAAGTATCATTCTGG	13	Geo, Test	
Cyt b	Η	15232	CB3-3'/"K"	GGCAAATAGGAARTATCATTC	121	Trio	150
Cyt b	L	15237	L-15601	CCATTCTACGCTCAATCCC	91	Emy	57-59,91
Cyt b	L	15237	Podmt1	CAATGCTGCGATCCATCC	151	Podo	
Cyt b	Η	15435	L	TCTTCTACTGGTTGTCCTCCGATTCA	150	TE	
Cyt b	L	15457	L14	AGCAGCCTCCATCCTTTTACTT	135	Geo	
tŘNA-Thr	L	15557	CYTTOR/ CytoR4	GCTTAACTAAAGCACCGGTCTTG	28	Test	15, 23, 91
tRNA-Thr	L	15567	LGL 283	TACACTGGTCTTGTAAACC	87,91	Emy	89, 91, 114
tRNA-Thr	L	15569	Thr-L15569	CATTGGTCTTGTAAACCAAAGACTG	119	Test	
tRNA-Thr	Н	15569	H-15909/MT-f-na	AGGGTGGAGTCTTCAGTTTTTGGTTTACAAGACCAATG	91	Emv. Geo, Test	56-60, 91, 144
tRNA-Thr	Н	15585	THR-8	GGTTTACAAGACCAATGCTT	154	Emy, Geo, Test	36, 77, 91, 103, 153
tRNA-Thr	Н	15591	Tcvtbthr	TTCTTTGGTTTACAAGACC	44	Trio	
tRNA-Thr	Н	15593	H-15909	CAGTTTTTGGTTTACAAGACCAATG	14	Geo	
tRNA-Thr	H	15593	"M"/DW1594/THR	TCATCTTCGGTTTACAAGAC	150	Emv. Geo. Test.	36, 45, 77, 91, 103
uu vi in		10070	101 / D 10 10 / 11 III		150	Trio	154 168
tRNA-Thr	L	15565	TCRThr	AAAGCAYTGGTCTTGTAAACC	TNE	Chelo Podo Trio	10 1, 100
tRNA_Thr	ī	15573	PounCRThr	GGTCTTGTAAACCAAAAACTG	TNE	Podo	
tRNA_Thr	н	15593	H9	CAATCTTTGGTTTACAAGACC	135	Geo	
tRNA_Thr	T	15605	$n_0 n_2 m_2(2)$	TCTTCCTAGAATAATCAAAAG	130	Chelv	138
tRNA_Thr	ī	15600	CS1	CTAGA ATA ATCA A A AGAGA AGG	167	Chely	150
tRNA_Pro	ī	15624	myt001	GAGAAAGACTTAAACCTTC	16/	Test	
tRNA-Pro	ī	15629	AI D-DI AFor	AGACTCAAACCCTCATCTCCGG	110	Test	
tRNA-Pro	н	1502)	DW1	CCTTTGATAAAAGATACGGATCTTACGGC	165	Kino	166
Control	T	15863	Tur d loop F	GCTATGTACGTCGTGCATTCAT	105	Delo	100
Control	I	15876	DES 1	GCATTCATCTATTTTCCCTTAGCA	1/4	Emy	152
Control	I	15790	MC1E	CAACCETCCATCCCCCATAAC	54	Emy	152
Control	L U	15994	CD12L		02	Emy Coo	66 01 02 164 171
Control	п	15004	CR12H CP12H		93	Emy, 0e0	00, 91, 92, 104, 171
Control	п	15004			92	Test	114
Control	L	13902 D15040	П10404 Tund Ioon E1		105	Dala	114
Control	L	16049	TUF 0-1000 FT		1/4	Pelo	
Control	L	10048	KNCK 2/1F		148	KINO E 1 · 1	
Control	L	10088	EDF1		125	Emydoidea	
Control	L	10103	LIU ALL DL 1FD	AACIGATITATICIGGCCICI	135	Geo	
Control	L	10100	Ald-DLIFK		119	Test	
Control	H	161/0	ICK500		44	Podo, Trio, Chelo	
Control	H	16188	MSIR	GIGUCIGAAAAAACAACCACAGG	54	Emy	
Control	H	16194	myt003	GACAAAACAACCAAAGGCCAG	164	Test	
Control	H	16202	LGL 1115	ATGACUCIGAAGAAAGAACCAG	87	Emy, Chely	89, 104, 114, 138, 139, 164
Control	H	16237	PounCR500	GAACCAGAGGCCICITAAAAAG	TNE	Podo	4.44
Control	Н	16269	DW2	GATTAATAGICTAGAACITACIGACCAAAGGC	165	Kino	166
Control	L	16288	KNCR 562F	GGICITACTIGCATATCGTAG	148	Kino	
Control	Н	16294	Ald-DL2Rev	TAAAAGCGCAATATGCCAGG	119	Test	
Control	Н	16308	KNCR 581R	CTACGATATGCAAGTAAGACC	148	Kino	
Control	L	16332	ChelProF	CCGGTCCCCAAAACCGGAAC	3	Kino	148
Control	Η	16374	H14	CAGICITCATTGAGTTGGCAG	135	Geo	
Control	Η	16583	EbR1	ATTTAGGGGTTGYCGAGA	2	Emydoidea	
Control	Η	16585	DES-2	GGATTTAGGGGTTTGACGAGAAT	155	Emy	152, 153

sive list of potentially very useful loci in this review because these primers have not been tried on genomic DNA, and cDNA cloning techniques are not as accessible to many molecular biologists. However, we strongly encourage readers to consult the original references and explore the utility of this rich source of phylogenetically informative genetic loci.

Microsatellite Simple Tandem Repeat (STR) Loci

Microsatellites have become popular genetic markers for determining population structure and revealing differentiation among populations and individuals (Bruford and Wayne, 1993). Microsatellites, or simple tandem repeats (STRs), are non-coding repetitive DNA sequences composed of a variable number of tandemly repeating motifs. On average, STRs have mutation rates between 10⁻² and 10⁻⁵ per gamete per generation (Page and Holmes, 1998) and thus can provide the resolution to differentiate individuals and populations, even within small geographic areas.

Microsatellites are bi-parentally inherited (unless associated with a sex chromosome) and co-dominant, thereby allowing both alleles at a locus to be identified in heterozygotes. Microsatellites are generally considered selectively neutral (but see McGaugh et al., this volume) and their simple Mendelian transmission makes them useful for assessing genetic diversity. In freshwater turtles and tortoises, microsatellites have been used in studies of population genetics (e.g., Ciofi et al., 2002; Kuo and Janzen, 2004), conservation genetics (e.g., Sites et al., 1999; Cunningham et al., 2002; Pearse et al., 2006), as well as paternity and mating systems (e.g., Valenzuela, 2000; Roques et al., 2006; Pearse et al., in press). In addition, STRs are well-suited to address future concerns in turtle biology such as interspecies hybridization (Roy et al., 1994, 1996; Williams et al., 2005) and forensic detection of wildlife poaching (e.g., Manel et al., 2002).

The process of finding microsatellite markers can unfortunately be very time-consuming and expensive. The methods for locating STR loci have improved (Zane et al., Table 2. Primers currently available for amplification of nuclear loci of tortoise and freshwater turtles. Groups of taxa successfully amplified and associatedreferences are listed in the final columns (cited references listed below). Key to taxa: CR = Suborder Cryptodira, Chely = Family Chelydridae, TE =Superfamily Testudinoidea, Test = Family Testudinidae, Geo = Family Geoemydidae, Emy = Family Emydidae, TR =Superfamily Carettochelyidae, Trio = Family Trionychidae, K =Superfamily Kinosternidae, Platy = Family Platysternidae, C =Superfamily Chelonioidea, Chelo = Family Chelonioidea, Dermo = Family Dermochelyidae, PL =Suborder Pleurodira, Cheli = Family Chelidae, P =Superfamily Pelomedusoidea, Pelo = Family Pelomedusidae, Podo = Family Podocnemididae.

Primer Name	Length (bp)	Primer Sequence(5'-3')	Ref.	Taxa	References citing primer
ACT I-5'	20	GCTGTTTTCCCGTCCATTGT	121	Test	26
ACT II-3'	24	GTCCTTCTGCCCCATACCSACCAG	121	Test	26
Ald1-5'	23	TGTGCCCAGTATAAGAAGGATGG	121	Test	26
Ald2-3'	29	CCCATCAGGGAGAATTTCAGGCTCCACAA	121	Test	26
cal1	23	GCCGAGCTGCARGAYATGATCAA	38	Test	26
cal2	26	GTGTCCTTCATTTTNCKTGCCATCAT	37	Test	26
G136 (F)	20	AAGCAGGTGAAGAAATGCAG	63	PL	
G137 (R)	19	TCCAATCTTGCACACACCC	63	PL	
CM1	23	GCCTGGTGCTCCATCGACTGGGA	12	Test	90
CM2	25	GGGTGATGGCAAAGGAGTAGATGTC	12	Test	90
Cmos1	26	GCCTGGTGCTCCATCGACTGGGATCA	90	Test	
Cmos3	23	GTAGATGTCTGCTTTGGGGGGTGA	90	Test	
CK6-5'	24	GACCACCTCCGAGTCATCTCBATG	121	Test	26
CK7-3'	21	CAGGTGCTCGTTCCACATGAA	121	Test	26
GapdH950	27	CATCAAGTCCACAACACGGTTGCTGTA	55	Emy	152
GapdL890	26	ACCTTTAATGCGGGTGCTGGCATTGC	55	Emy	152
HNFAL-F	20	GCAGCCCTCTACACCTGGTA	131	Geo	153
HNFAL-R	20	CAATATCCCCTGACCAGCAT	131	Geo	153
RNA-1	29	TCCGTAGGTGAACCTGCGGAAGGATCATT	95	Test	26
RNA-2	29	CACGAGCCGAGTGATCCACCGCTAAGAGT	95	Test	26
RNA-3	19	GCGTTCCGGCGCGGAGGTT	95	Test	26
RNA-4	19	AAACCTCCGCGCCGCAACG	95	Test	26
R35 Ex1	21	ACGATTCTCGCTGATTCTTGC	61	Emy, Geo, Trio	36, 44, 152-154
R35 Ex2	24	GCAGAAAACTGAATGTCTCAAAGG	61	Emy, Geo, Trio	36, 44, 152-154
L-R35int	25	AGCATTACTACATTTTGATGCAATG	158	Geo	
H-R35int	21	CCAGCAAAGGACTCACTTGTA	158	Geo	
R35In1CF	20	TTKVTGBAATKTATGGRRAG	153	Geo	
R35In1CR	20	CTYYCCATAMATTVCABMAA	153	Geo	
RAGF1	20	CCWGAWGARATTCAGCAYCC	83	TE	
RAGF2	21	GAGATCATTYGAAAAGGCACC	83	TE	
RAGF3	21	AGAACCTGCATCCTRAAGTGC	83	TE	
RAGF5	21	GAGATGTCAGYGAGAAGCATG	83	TE	
RAGR1	22	GCAAGATCTCTTCATCRCATTC	83	TE	
RAGR2	22	GATGTTCAGGAAGGATTTCACT	83	TE	
RAGR3	21	CTCAGGATGGCTGTCAGAGTC	83	TE	
RAGR4	21	TGCAACACAGCTCTGAATTGG	83	TE	
RAGR5	20	GACATCCTCCATTTCATAGC	83	TE	
F2 (Rag2)	23	CAGGATGGACTTTCTTTCCATGT	90	Test	
F2-1(Rag2)	19	TTCCAGAGCTTCAGGATGG	90	Test	
R2-1(Rag2)	25	CAGTTGAATAGAAAGGAACCCAAGT	90	Test	
RELN61F	30	TGAAAGAGTCACTGAAATAAACTGGGAAAC	153	Geo	
RELN61R	26	GCCATGTAATTCCATTATTTACACTG	153	Geo	
	Primer Name ACT 1-5' ACT 11-3' Ald1-5' Ald2-3' cal2 G136 (F) G137 (R) CM1 CM2 Cmos1 Cmos3 CK6-5' CK7-3' GapdH950 GapdL890 HNFAL-F HNFAL-F HNFAL-R RNA-1 RNA-2 RNA-3 RNA-4 R35 Ex1 R35 Ex1	Primer Name Length (bp) ACT I-5' 20 ACT II-3' 24 Ald1-5' 23 Ald2-3' 29 cal1 23 cal2 26 G136 (F) 20 G137 (R) 19 CM1 23 CM2 25 Cmos1 26 Cmos3 23 CK6-5' 24 CK7-3' 21 GapdH950 27 GapdL890 26 HNFAL-F 20 RNA-1 29 RNA-2 29 RNA-3 19 RNA-4 19 R35 Ex1 21 R35 Ex1 21 R35In1CF 20 RAGF1 20 RAGF2 21 RAGF3 21 RAGF3 21 RAGF3 21 RAGF3 21 RAGF3 21	Primer Name Length (bp)Primer Sequence(5'-3')ACT 1-5'20GCTGTTTTCCCGTCCATTGTACT 1I-3'24GTCCTTCTGCCCCATACCSACCAGAld1-5'23TGTGCCCCAGGAGAATTTCAGGCTCCACAAcal123GCCGAGCTGCARGAYATGATCAAcal226GTGTCCTTCATTTTNCKTGCCATCATG136 (F)20AAGCAGGTGAAGAAATGCAAGG137 (R)19TCCAATCTTGCACACACCCCM123GCCTGGTGCTCCATCGACTGGGAGCM225GGGTGATGCCAGACACCCCmos126GCCTGGTGCTCCATCGACTGGGGATCACmos323GTAGATGTCTGCTTTGGGGGTGACK6-5'24GACCACCTCCCACACACGGTGCTGCAATGCGapdH95027CATCAAGTCCACACACCGGTGCTGGCATTGCHNFAL-F20CAAGCGCGGTGGTGCACACCGGGAAGGATCATTRNA-129TCCCATAGTGAACCTGCGGAAGGATCATTRNA-229CACGAGCCGAGTGATCCACCGGCAGGAGGTRNA-319ACACTCCGCGCGCGAAGGR35 Ex121ACGATTCTCGCTGATCTTGAAGGR35 Ex121ACGATTCTCGCTGATTGTAAGGAAGGR35 Ex121ACGATTCTCGCTGATTGTAAAGGR351n1CF20CTYYCCATAMATTVCABMAARAGF120CCMGAWAATTCAGCAYCCRAGF221GAGATCATTYGAAAAGGCACCRAGF321GCAGCTCATCTCTCACATGGRAGF321GCAGCTCATCTCTCATCRCATGRAGF321GCAGCCGCGCAGGAGGATTTCACTRAGF321GCAGCACCGCGCCACGAGTGRAGF120CCWGAWGAATTCAGGACCCRAGF321GCAGCACTCCTCTATCTCRCATGCR	Primer Name Length (bp)Primer Sequence(5'-3')Ref.ACT 1-5'20GCTGTTTTCCCGTCCATTGT121ACT II-3'24GTCCTTCTGCCCCATACCSACCAG121Ald1-5'23TGTGCCCACTATAAGAAGAGTGG121Ald2-3'29CCCATCAGGGAGAATTTCAGGCTCCACAA121call23GCCGAGCTGCARGAYATGATCAA38cal226GTGTCTTCATTTTNCKTGCCATCAT37G136 (F)20AAGCAGGTGACACACCC63G137 (R)19TCCAATCTTGCACACACCC63CM123GCCTGGTGCTCCATCGACTGGGATCA90Cmos126GCCTGGTGCTCCATCGACTGGGATCA90Cmos126GCCTGGTGCTCCATCGACTGGGATCA90CKo-5'24GACCACCTCCGAGTCATCTCBATG121GapdH95027CATCAAGTCCACAACACGGTTGCTGTA55GapdL89026ACCTTTAATGCGGGTGCTCGCCATTGA131HNFAL-F20CAATATCCCCTGACCACACACGGTTGCTGTA55RNA-129TCCGTAGGTGAACCTGCGGAAGGATCATT95RNA-229CACGAGCCGAGTGATCCTACCGCCAAGG95RNA-319GCGTTCCGCCGCGGAAGG153R35In1CF20CTTXCGACATTCAATTTGATGCAATG158RAGF121AGAACTTCCGCTGATCATCATGAAGG153RAGF221GAGATGTCACATGAAGGACCCAAGG83RAGF321AGAACTTCCCCTGATTCTGC83RAGF321AGAACTTCCCATTCCATTGAAGTGC83RAGF321AGAACTTCCCATTCCATTGAAGTC83RAGF321G	Primer NameLength (bp)Primer Sequence(5'-3')Ref.TaxaACT 1-5'20GCTGTTTTCCCGTCCATTGT121TestAdd1-5'23GTCCTTCTCCCCCCATACCSACCAG121TestAld1-5'23TGTGCCCCAGTATAAGAAGAGGATGG121Testcall23GCCGAGCTGCARGAYATGATCAG38Testcall23GCCGAGCTGCARGAYATGATCAA38Testcal226GTGTCCTTCTTTTTTTTCKTGCCATCAT37TestG136 (F)20AAGCAGGTGAAGAAAT0CAG63PLCM123GCCTGGTGCTCCATTGACCACCC63PLCM225GGGTGGTGCTCCATCGACTGGGGA20TestCmos126GCCTGGTGCTCCATCGACTGGGGATCA90TestCmos323GTAGATGTCTGCTTTGGGGGTGGA90TestCK6-5'24GACCACCTCCCGAGTCATCTCBATG121TestGapdH95027CATCAAGTCCACAACACGGTGGCTGTGCGTTA55EmyGapdL80026ACCTTTAATTCCCTGGCAAGGAGGATCATT95TestRNA-129CACGAGCCGAGCGGCGGCGCGCAGCG95TestRNA-229CACGAGCCGGAGGGTT95TestRNA-319GCGTTCCCGCGCGCAAGG95TestRNA-419AACCTCCCGCGCGCAACG153GeoR35kxl21ACGATTCTCGCGTCATTGTA158GeoRAGF120CATCAGGAAAACTGATTGTTCAAAGG61Emy, Geo, TrioR35kxl21ACGATTCTCCGCGCGAAGGATCATT95Test

2002), yet, even for the experienced worker, laboratory procedures may require substantial time and money. Commercially, it can cost from \$10,000 to \$15,000 per species to develop an STR library. In addition, even after loci have been identified, there is no guarantee the loci will be polymorphic (i.e., exhibit multiple alleles) and therefore be informative to the research question. Although costs are high in the development phase, this expense is offset by relatively low costs associated with later phases (i.e., genotyping) and by the potential utility of the markers for future studies of the target species or other closely related taxa. Because the cost of commercially synthesized primers is low (ca. \$0.30/bp), assessing the utility (i.e., polymorphism) of primers already developed for taxa closely related to the target species is far more cost effective. In Table 3 we have compiled the primer sequences for 160 STR loci from all major clades of turtles. Many of these loci have already exhibited successful amplification in other species.

Turtles are suggested to have conservative genomes and therefore may be particularly well suited to inter-species primer amplification (Avise et al., 1992; FitzSimmons et al., 1995; King and Julian, 2004). However, conservation of the sequence flanking the STR (i.e., where the primer attaches) does not necessarily imply that the STR motif has also been conserved. Therefore, we offer a few cautionary tales to stress the importance of sequencing polymorphic loci developed in a non-target species before making assumptions regarding utility of a marker, even if it is to be used in a closely related species. Sequencing also allows for uniformity of datasets by different researchers. For example, despite hundreds of millions of years of evolutionary change, primers developed for a microsatellite locus in Chelonia mydas amplify the same locus (verified by comparing flanking sequences) in Gopherus agassizii and exhibit moderate variability, although the repeat motif is dramatically different (Edwards et al., 2004) (Tables 3 and 4). Motif changes can also be observed within a genus (e.g., locus GP81 identified in Gopherus polyphemus and successfully amplified in Gopherus agassizii [Tables 3 and 4; Schwartz et al., 2003]), or even within a species (e.g., locus GP61 originally Table 3. Primer pairs developed for microsatellite loci in turtles. Taxa Described = original species in which the loci were identified. Additional Taxa = Taxa in which the locus has been successfully amplified. Additonal References = Studies in addition to the original reference which have used the locus. Key to Taxa: Apsp = *Apalone spinifera*; Caca = *Caretta caretta*; Cain = *Carettochelys insculpta*; CHEL = Famly Cheloniidae; Chmy = *Chelonia mydas*; Chpi = *Chrysemys picta*; Chru = *Chelodina rugosa*; Chse = *Chelydra serpentina*; Deco = *Dermochelys coriacea*; DERM = Family Dermochelyidae; Erim = *Eretmochelys inbricata*; Erma = *Erymonchelys madagascariensis*; GEOC = *Geochelone* spp.; Gera = *Geochelone radiata*; Glin = *Glyptemys insculpta*; Glim = *Glyptemys mullenbergii*; Goag = *Gopherus agassizii*; GOPH = *Gopherus* spp.; Goro = *Gopherus polyphemus*; Grko = *Graptemys kohnii*; Leke = *Lepidochelys kempi*; Leol = *Lepidochelys olivacea*; Mate = *Malaclemys terrapin*; Poex = *Podocnemis expansa*; Tegr = *Testudo graeca*; Tehe = *Testudo marginata*; Tewe = *Testudo weissingeri*; Teor = *Terrapene ornata*. Information for unpublished primer sequences: Unpub01 = Arthur Georges(georges@aerg.canberra.edu.au) primers for *Chelodina rugosa* purchased under contract from Jane FitzSimmons and Georges; Unpub04 = Peter H. Dutton (Peter.Dutton@noaa.gov).

Locus	GenBank Acc. No.	Repeat Motif	Forward and Reverse Primer sequence (5'_3')	Amplicon Size (bp)	Obs. Alleles	Taxa Descr.	Add. Taxa	Orig. Ref.	Add. Refs.
Ah01		GA	F: TGCAGTTTGCTGAGCTTAGAG	120-160	6	Teho		79	
Ah02		GA	R: TGTTGGCTGGTCTCATGTTC F: AGGGGTGGGGGATAGATTG	123-137	7	Teho		79	
BTCA2	AY335787	(CA) ₈ N ₁₄ (CA) ₇	R: GCAGAGAGCAGAGGI II GACC F: CTTAAAAAGACATTAAAATATCTT R: AACTCTCCCTAAAAACCACAG	184–192	3	Embl	Chpi, Chse	97	
BTCA5	AY335788	(GA) ₁₁	F: GCTGCTTAGCACAACTCATAA R: CTTTTGTATTTAATCCATGATGAA	146–154	3	Embl	Chpi, Chse	97	
BTCA7	AY335789	(CA) ₁₂	F: TGGAATTAGATGTTTTGCAGTT R: TCATTTCTGTTTTCCACACTG	154–158	2	Embl	Chpi, Chse	97	
BTCA9	AY335790	(CA) ₉	F: TACTCAAGATTTGAAGCAGATACA R: GGCTTGATTCTACTGTCACTTAC	148–184	9	Embl	Chpi, Chse	97	
BTGA2	AY335791	$(GGA)_5N_3(GA)_3$	F: ATGATCTAATGGTCCCTTCTG R: CTGTTAGCTTATTCTTCTGCAA	144–148	3	Embl	Chpi, Chse	97	
BTGA3	AY335792	(GA) ₁₁	F: CCTAGATTTTGTCTGGCTATTA R: TATCTCAGTAATAATCCCCTTAG	108	1	Embl	Chpi, Chse	97	
BTGA4	AY335793	(GA) ₁₁	F: CTCATAAAGTAAGGACGGGAA R: CCTAGAGATGGAATCTTTTGTATT	146–154	3	Embl	Chpi, Chse	97	
Cc117		(CA) ₁₇	F: TCTTTAACGTATCTCCTGTAGCTC R: CAGTAGTGTCAGTTCATTGTTTCA			Caca	CHEL, DERM	49, 50	32, 48, 50
Cc-136		(GT) ₂₁	F: ACCAATCATTCAATGCCTTAGG R: CTTTGCTAGGTATTTATACACACAG	124-228	44	Caca		Unpub02	
Cc141			F: CAGCAGGCTGTCAGTTCTCCAC R: TAGTACGTCTGGCCTGACTTT			Caca		Unpub02	19, 32, 110
Cc7		(CA) ₁₄	F: TGCATTGCTTGACCAATTAGTGAG R: ACATGTATAGTTGAGGAGCAAGTG	165-217	20	Caca	EMYD, GOPH	47	19, 32, 39, 40, 110
Ccar176	AF333763		F: GGCTGGGTGTCCATAAAAGA R: TTGATGCAGGAGTCACCAAG	186–220	16	Caca		110	
CCM2			F: TGGCACTGGTGGAAT R: TGACTCCCAAATACTGCT			Caca		53	19, 110
Ci-107		$(CT)_{\!6}T(CT)_{\!3}(CA)_{10}TA(CA)_8$	F: CCAGGAATTTCTTCATGCCAC	288	1	Cain		Unpub03	
Ci-123		$(CA)_3CG(CA)_{13}$	F: GTTTGCAGGCAACCATCATAGTC	172	1	Cain		Unpub03	
Ci-124		$(CA)_4CN(CA)_{32}$	F: AAACAAATCTGCTATCATGCC R: GTGGAGATACAACCTTTATGATGAC	150-210	16	Cain		Unpub03	
Ci-125		(CA) ₁₇	F: ACACAGCATATTATGATTAG R: TIGTGTCTTTGCTATTTTAGTC	194-196	2	Cain		Unpub03	
Ci-126		(CA) ₁₆	F: GGGATCAAACCATGCAAGTATG	102-10/	2	Cain		Unpub03	
Ci-128		(CA) ₁₇	F: GTTTCCATCCCTATTAAGTTATCAC	283	1	Cain		Unpub03	
Ci-130		$(CA)_{12}GA(T)_7$	F: GTTTACAATACCTGCACTTTCTC	103	1	Cain		Unpub03	
Ci-145		(CA) ₁₃	F: GTTTGGGCACCTGTCTCTTATAG	147	1	Cain		Unpub03	
Cm3		(CA) ₁₃	F: AATACTACCATGAGATGGGATGTG			Chmy	CHEL, DERM	49, 50	32, 48, 137
Cm58		(CA) ₁₃	F: GCCTGCAGTACACTCGGTATTTAT			Chmy	CHEL, DERM,	49	41, 48, 137
Cm72		(CA) ₃₃	F: CTATAAGGAGAAAGCGTTAAGACA			Chmy	CHEL, DERM	49	48, 137
Cm84		(CA) ₁₅	F: TGTTTTGACATTAGTCCAGGATTG			Chmy	CHEL, DERM	49	32, 73, 80, 137
Cp10			F: GGTGCAGCAAGTTCAGGAGAC		~24	Chpi		129	
Cp2			F: CTCTAAGGGTTGCACTCCTCAAA P: CACGTCCCATCAAAACATCAT		~24	Chpi		129	
Ср3			F: ATCTTTAAGTCTGTGAACTTCAGGG		~24	Chpi		129	
Dc107			F: GTCACGGAAAGAGTGCCTGC R· CAATTTGAGGTTATAGACC	158–186	11	Deco	Caca	Unpub04	19
Dc99 Eb05	AE416002	4 A.T.	F: CACCCATTTTTTCCCATTG	130-140	5	Deco	Chen Com	19	32
EUUJ	AF410293	AA1	R: TTGGCATTCTACACATAATAA	43-37	3	LIIIUI	Clise, Copo	115	
Eb09	AF411049	CA	R: TTGAATTAGCTCATAAGCAC R: TCATAATGTGAATTGGTCTC	128–160	15	Embl	Gopo	115	108

Eb11	AF411050	CA	F: GAGGATCAGAATGTTCAGAC	172–204	13	Embl		115	108
Eb12	AF416294	CA	R: ICIGACIIGAAIIAAACCIC F: GTCCCTAGATTTAACTGATAAACTTG P: ACCCTCCACCAACACCAATAC	119–141	7	Embl	Chse, Chpi	115	
Eb15	AF411051	CA	F: AATTGATCCCTTGATCCG	147–186	34	Embl	Chse, Chpi, Gopo	115	
Eb17	AF416295	AAT	R: TCAGGACTATGAGGAAGC F: CCCACAAAAGTAGACACCTAT	94–109	5	Embl	Chse, Chpi,	115	108
Eb19	AF416296	AAT	R: GGCACIGAAAIAAGAGAAAGIA F: AGGGCTCTGAAGCACTAAAGTAA P: CTCCGGCTTTTCATTTGTGT	100–109	3	Embl	Gopo, Irsp Chse, Chpi, Apsp	115	108
Ei8		(CA) ₁₉	F: ATATGATTAGGCAAGGCTCTCAAC			Erim	CHEL, DERM	49	32, 73, 80, 108, 137
GAL100		(CA) ₂₆	F: TCTTAATAAATTCCATGAGTTGAGCT	100-156	19	GEOC	DIPS	31	15, 119
GAL127		(CA) ₂₁	F: TAACTATAAACATCAACAGAA P: GTTTAGTGTCATCTGCATATGC	97-175	31	GEOC		31	15, 62
GAL136		(CA) ₂₀	F: ATGAGATGTATGTACAGAAAATATA	73-101	12	GEOC	DIPS	31	15, 119
GAL159		(CA) ₂₄	F: AATATTTGAAGATACTCATCCTCGA	83-123	19	GEOC		31	15
GAL247		(CA) ₃₉	F: ATTAACTGATTTGAGCAGTCATCCA	69–93	3	GEOC	DIPS	119	
GAL263		(CA) ₁₇	F: GGGAAAGTACTATTTCCAGAGCTGG	80-164	25	GEOC	DIPS	31	15, 119
GAL45		(CA) ₁₇	F: TATCTCCTTCCACACGGAGATGGG	87-123	13	GEOC		31	15
GAL50		(CA) ₂₄	R: CCCCAAAGTAAAGTAGCTCTCTCA F: TGGGACAGGCAAACTAACAAAACTT	96-182	37	GEOC	DIPS	31	15, 119
GAL73		(CA) ₂₄	R: IGCAGAAGITAAICCCTTICTCCTT F: ATTATGTGCTTGTGTCATCTTTTTC	78-126	20	GEOC	DIPS	31	15, 119
GAL75		(CA) ₂₄	R: TIGAAGATACTCATCCTCGATACA F: GAAGCCATTTACCACAAACTTATT	73-149	22	GEOC		31	15
GAL85		(CA) ₂₂	R: GTTACCATAGCATTCCTGATTATAG F: TGTGGGGCATGGAAGGGCC	81–91	3	GEOC	DIPS	119	
GAL94		(CA) ₁₈	R: CACCAAGAGAGAGGAAAATAATGCTGGG F: CTTCTATTTCCCAACCATCT	85-111	13	GEOC	DIPS	31	15, 119
GmuA18	AF337648	(GT) ₁₄	R: AACITIATATITGIGIGCATATT F: TATCAGGGAAAGCAATGTAAGG			Glmu	EMYD	81	
GmuA19	AF517227	(GA)7(GT)14	R: AGIGAAACAAGCAGITATGGIG F: TAAGAGACAGATGCTCAGCAAG			Glmu	Teor	81	84
GmuA32	AF517228	(GT) ₃₃	R: GTACATAACACGCACCCAATG F: TTATATTGCCTGCTGCTATCAC			Glmu	EMYD	81	
GmuB08	AF517229	(TAC) ₁₀	R: ATGAAAGTGTGCCTTTCACTG F: CTCTGAGACCCTTATTCACGTC			Glmu	Teor	81	79, 84, 140
GmuB12	AF517230	(TAC) ₇	R: AGCCITIGICIGTAAGCIGTIC F: TCAATCTTCCAGCCTAACTGTG			Glmu	Teor, Tegr	81	84
GmuB21	AF517231	(TAC) ₁₀	R: AGGGATGTGTTTTGCAACTGG F: CTAGTTCGAAACAGGACCGTTG			Glmu	Teor, Glin	81	84, 160
GmuB67	AF517232	(TAC) ₁₃	R: CCACACGACAGITIGATGICAG F: ACTCAAGCACTGACACACAATC	151–168	3	Glmu	Teor	81	84
GmuB80	AF517233	(ATCT) ₁₆	R: CCAGTATTTGTGAGAATTTCCTTC F: TTATTGTGCATTGTATCATGGG			Glmu	EMYD	81	
GmuB91	AF517234	(TAC) ₆	R: CGCTACCATCATGTAACTAAGAG F: TCAGGGAAGCAATAGAACACTC	139–142	2	Glmu	Teor	81	84
GmuD107	AF517250	(ATCT) ₁₅	R: TCTCATCCCTAAGTAAACCCAC F: GACAAACATGAACAGGAGAAGAG	189–209	5	Glmu	EMYD	81	
GmuD114	AF517251	(ATCT) ₁₃	R:ATTAGAGAGAGACAGATAGATAGGACTTG F: ATAGACATAGTGCATATAGACATAGCC	92–128	6	Glmu	EMYD	81	141
GmuD121	AF517252	(ATCT) ₈	R: ACGTTCTTGCAGGGTCAGAG F: GGCAAATATCCAATAGAAATCC	138–154	5	Glmu	Teor	81	84
GmuD16	AF517235	(ATCT) ₁₉	R: CAACTTCCTCGTGGGTTCAG F: ATCCCTGAAATTTTGTGTGTGTTC	188–228	9	Glmu	EMYD, Glin, Tegr	81	84, 160
GmuD21	AF517236	(ATCT) ₁₅	R: TTTACTCTAGAAGGGGCAATCC F: GCAGTTAGGCATTACTCAACATC	163–199	5	Glmu	Teor	81	84
GmuD28	AF517237	(ATCT) ₁₅	R: AGGGTATGAATACAGGGGTGTC F: AGCTGTTTGTCATCATACACTCTC	208–236	6	Glmu	EMYD	81	
GmuD40	AF517238	(ATCT) ₂₂	R: TGGCCCTCATGTTTTATAAGTG F: TTTGTCATATCATCCACTCACC	157–201	9	Glmu	EMYD, Glin	81	160
GmuD51	AF517239	(ATCT) ₅₂	R: TTTGTCACAGATGGGAATTAGC F: GTTGGGCACTAGATAGATTCG	307-359	10	Glmu	EMYD, Tegr	81	79, 140, 141
GmuD55	AF517240	(ATCT) ₁₀	R: CATTCAAGTCAACGGAAAGAC F: GTGATACTCTGCAACCCATCC	212–224	4	Glmu	Teor	81	84
GmuD62	AF517241	(ATCT) ₁₁	R: TTGCATTCAGAATATCCATCAG F: GGTGGTATAGAAAATCCTAAAATGG			Glmu	Teor	81	84
GmuD70	AF517242	(ATCT) ₈	R: GTGCAAACTGTCTGGAAATAGG F: AGTGTAGTCATGGCATAGAGAGG	185-205	5	Glmu	EMYD	81	
GmuD79	AF517243	(ATCT) ₁₀	R: ATCAAATTCTTCCAACCCTACC F: GCCCTGTTCCATTCTTATTCTG	164–192	3	Glmu	Teor	81	84
GmuD87	AF517244	(ATCT) ₂₂	R: ATCCCCTTAGTCGTCTCTTTTC F: AAACCCTAAGACATCAGACAGG	260–292	8	Glmu	Teor, Glin	81	79, 84, 140
GmuD88	AF517245	(ATCT) ₁₈	R: CAAATCCAGTACCCAGAAAGTC F: AACAATGCCTGAAAATGCAC	154–178	17	Glmu	Teor	81	84
GmuD89	AF517246	(ATCT) ₇	R: TAGGCTACCTCTGAAAATGCTG F: GCTCGCTGTAACTAGCTCTAACTC	112–124	3	Glmu	EMYD	81	
GmuD90	AF517247	(ATCT) ₉	R: CCAGGCAGCTTTGTTTAATG F: ATAGCAGGACAATTACCACCAG	122–134	3	Glmu	Teor	81	84
			R: CCTAGTTGCTGCTGACTCCAC						

GmuD93	AF517248	(ATCT) ₁₈	F: AGACTCTCTTGACCAGATTTTCTC	185–389	10	Glmu	Teor, Glin	81	84, 140, 141
GmuD95	AF517249	(ATCT) ₁₇	R: TETGEETTETATCACTETEETG F: AGGTACGAGACAGGACAAAGTG	153–177	4	Glmu	Teor	81	84
Goag3	AY317141	(CAA) ₆	F: CTGATIGGTCTGACTCCCT	375-381	3	Goag		40	
Goag32	AY317147	(AC) ₆	F: GTGCTGCCTTGATAGTAA	177-179	2	Goag		40	
Goag4	AY317142	(CAA) ₂₄	F: CTCAACAAAAGGTAAGTGATG R: GCATAAAAAGTAAACAGTAAAGTA	110-188	17	Goag		40	
Goag5	AY317143	(GAT) ₁₇	F: AGGCAAGTGGGTGGTAATG	257-365	27	Goag		40	
Goag6	AY317144	(TC) ₈ (AC) ₁₁	F: TAAGGGCTATGAGGAAGAAT	360-442	15	Goag		40	
Goag7	AY317145	(AC) ₃ (GC) ₅ (AC) ₁₁	F: TCAATCCATTAGTCTTCACCC B: TTTCTGTTTATGCTCCGTATTA	261-281	8	Goag		40	
Goag8	AY317146	$(CA)_{14}TA(CA)_3$	F: ATGCTGACAATAGAACAAGA	192	1	Goag		40	
GP102	AF546890	(GT) ₅ (CT) ₁₃ (CA) ₅		299–339	15	Gopo	GOPH, Grko	146	54, 109, 145
GP15	AF546895	(GA) ₁₅ (GT) ₈	F: CCTATTTTTCCCCCTCACAGT R: GAAAATAAAAACAGTCCCAACCA	207–269	19	Gopo	GOPH, Grko	146	54, 109, 145
GP19	AF546891	(GT) ₉ /(GT) ₃ (GA) ₆	F: GCAGGACAGTGCCACACTA P: CAGCCATATTAATGACAATCTG	252-256	3	Gopo	GOPH, Grko	146	54, 109, 145
GP26	AF546892	(GT) ₁₂	F: GACAACCATCTTTACCCACA	358–370	6	Gopo	GOPH, Grko	146	54, 109, 145
GP30	AF546889	(GT) ₁₃	F: GAATGCAGCACCACCTGCTTGGTA	194–232	10	Gopo	GOPH, Grko	146	54, 109, 145
GP55	AF546893	(GT) ₉	F: TTAGGGATTTTCTGTCTACTTCAG	265–271	2	Gopo	GOPH, Grko	146	54, 109, 145
GP61	AF546896	(GT) ₁₂	F: GCATTAAACCATTGTGCCTCA	197–245	7	Gopo	GOPH, Grko	146	54, 109, 145
GP81	AF546894	(GT) ₁₁ (GA) ₁₀	F: TCACACAAACCCCATCCATA	397-415	7	Gopo	GOPH, Grko	146	54, 109, 145
GP96	AF546888	(GA) ₁₁	F: TCAGTTACCGGATAATGTTCAGTG	141–157	8	Gopo	GOPH, Grko	146	54, 109, 145
Klk314		(CA) ₅	F: GGTGCCAAGGAGGACGCTG	109	1	Leke		80	
Klk315		(CA) ₈	F: AGACAAACTCCCCCTTGCTAGG	135	10	Leke	Leol	80	
Klk316		(CA) ₂₂	R: CCCAGAAGGIGAAGAAATACCAAA F: TACATCCATACATGCAGCCCCCTGA	132	3	Leke	Leol	80	32
Klk325		(CA) ₈	F: CCCAGTTCCTTTCAACCAAGTA	155	1	Leke		80	
MR-1	AY934859	(AC)11	R: CTIGAGCITTAACAGATGACAAAA F: TTTCTGCACCTGCTTAACTT	222–234	5	Mari		101	
MR-2	AY934860	(AC)9	F: ACGGAATCCTGATTAATTCC	199–229	5	Mari		101	
MR-3	AY934861	GT)8	F: CATTTTCTTTATCGCCTCAC	181–189	5	Mari		101	
MR-5	AY934862	(GA)18	F: TCTAGGGTCGCCCCTGTAGG	149–189	10	Mari		101	
MR-8	AY934863	(GT)32(GA)12	F: TGCCCTCTGATGCTCTGGTG	154–194	18			101	
MR-9	AY934864	(CT)16	F: CCAATGCTCCAGGCGTG	97–105	5			101	
OR-1	AY325422	(CAAA) ₁₆	R: GCCAGICITACIGCIGAACC F: CCCCTTGTGTTCTGAAATCCTATGA B: CACCCATACCCAAAAATCACACCTA	150-202	24	Leol	Chmy, Erim	1	
OR-2	AY325423	(GT) ₈ GCC(GT) ₅	F: GCTCCTGCATCACTATTTCCTGTT	153–185	12	Leol	Chmy, Erim, Deco	1	
OR-3	AY325424	$(TC)_9(AC)_6GC(AC)_2$	F: TTGTTTTATTTTTATTGGTCATTTCAG	146	1	Leol	Chmy, Erim, Deco	1	
OR-4	AY325425	(TG) ₉ /(TG) ₂₃	F: AGGCACCTAACAGAGAACTTGG	122–172	18	Leol	Chmy, Erim	1	
OR-7	AY325427	(GT) ₆ (GA) ₇	R: OOUACCCTAAAATACCACAAOACA F:GGGTTAGATATAGGAGGTGCTTGATG	Г185–219	16	Leol	Chmy, Erim, Deco	1	
OR-8	AY325428	(TC) ₂₃	R: TCAGGATTAGCCAACAAGAGCAAAA F: GCACTGGTGGGAAAATATTGTTGT	148–166	8	Leol	Chmy, Erim, Deco	1	
PE1075	AF141138	(AC) ₁₁	F: ATGAGCCTGAAGAGTTGGAA	247-283	6	Poex		161	127, 128
PE344	AF141136	(AG) ₁₃	F: ATCCTGAGTTTAAAGGTGA	144–208	10	Poex		161	127, 128
PE519	AF141137	(CT) ₇ (CA) ₈ (CG) ₂ (CA) ₈	F: GCTGAGCTAGACTACATGC	239–327	8	Poex		161	127, 128
Pod1		(CA) ₃₂	F: GATCTTTCTTTACAGGTGCAGTTC	154-204	21	Poex		151	127, 128, 161
Pod128		(GT) ₂₇ (GC) ₇	F: GTGTCAGGGCTACCATCAAGATTG	140-209	23	Poex		151	127, 128, 161
Pod147		(GT) ₁₆ (A) ₂₀	F: GTGACAGCAGCATCTCATTTCTC	181-249	19	Poex		151	127, 128, 161
Pod62		(GT) ₁₁ (TA) ₅	F: ATGAGTGTGGGAATGAGAGGAAC	182-214	9	Poex		151	127, 128, 161
Pod79		(CT) ₁₃ (CA) ₁₆	F: GGGAGAGCATTGCTGGTTGGTG R: CAATGTCATCACCCCAGAACCC	220-260	16	Poex		151	127, 128, 161
Pod91		G ₉ (GT) ₁₇ (GA) ₈	F: TCATTTTGGTTAGAAGTGAAGGC R: GGTTGTTCATCTTTTAGATTCACC	111-255	40	Poex		151	127, 128, 161

RAD14	AY900651	(CT) ₁₂ (AC) ₁₄	F: GATCCCCAACTGTCACCAC	218–262		Gera		122	
RAD27	AY900652	(TG)7TA(TG)16	R: AAAATGTTGCTCTCCTAAATGC F: AAAATCTACCAAGGTCTGCAAAG	230–270		Gera		122	
RAD284	AY900653	(GT) ₂₂	R: TTACAGAGCATCAGCAAGGC F: GTGCTGAACAGAGGGCTGATG	209–243		Gera		122	
RAD313	AY900654	$(GT)_{12}GAG(GT)_3(GA)_6(GT)_5(GA)_{11}$	R: CACACACACAGACAGAAGATTATT F: AGTTGTTTTCCCACCCCC	220–292		Gera		122	
RAD542	AY900655	(CA) ₁₃	R: TCCCCAAGACACCIGCIG F: TCCTGTGATTGTTTCATAGAACG	148–196		Gera		122	
RAD573	AY900656	(CA) ₆ (TGCA) ₂ (CA) ₂ CG(CA) ₄	R: TCTGCTCCTTCCTGTGTGC F: TGAACAGAACGATCCTCCCC	199–225		Gera		122	
RAD891	AY900657	(CT) ₁₂ (CA) ₆ CG(CA) ₉	R: GGGAAAGCCAGGGCACTAG F: TATTCACCCACGAAAGCTCA	194–242		Gera		122	
RAD932	AY900658	(GT) ₁₅	R: GGTTGTTGGAGAAAGGAGGA F: GGTAGATAGTTCCTTCAGCCTTG	152-204		Gera		122	
T12		(CAG) ₉ /GAG/(CAG) ₃	R: TECECETETTTTETGTETEATAG F: GGGATCACTCGGCCACTCTGG	157-163	3	Chru		Unpub01	
T14		(TGC) ₈	R: ACCCAAGAATACCCGTCACCG F: TAGGCTCAGGGATATGATAGC	120-129	4	Chru		Unpub01	
T17		(TGC) ₇	R: CTCCAGCGACAGTTGCAACAG F: AACAGTATTATGGATGCAGAC	121-130	4	Chru		Unpub01	
T26		(GCA) ₇	R: GACACAAAAGGTACCATTCCC F: CAGTGATTTTTGCTACCAAGG	158-167	4	Chru		Unpub01	
T42		(ACC) ₈	R: GCAAAACAGTATTATGGATGC F: CCAAACTTGAACACTGCTGTG	158-164	2	Chru		Unpub01	
T44		(AGC) ₇	R: GGACTCCCAGATTATGGTCTC F: AAGGCAGTTGAGAACCAGGTG	131-142	5	Chru		Unpub01	
T50		(GCA) ₈	R: GTAGATGCCACCCATGTTGTC F: TGCTGCCTGCCATTAGCTTAC	134	1	Chru		Unpub01	
T58		(CAC) ₇	R: CTGCATTTGAGCAATTCGCTG F: TCCTGAAAGGGTGGGCAAAGG	157-166	3	Chru		Unpub01	
T79		(TGC) ₇ C(TGC) ₁	R: CTAGATGATTCTCAGTCTTTC F: TTCCCCCCACAAGTCACTTTC					Unpub01	
T80		(TGC) ₇	R: IGTATTACICICCGIGICICG F: CTCACCTGCAGCCTCTTTCTC	138-159	6	Chru		Unpub01	
T87		(TGC) ₉	R: AGGACCTTTCAGGACCCTCAC F: CAGCACTGATCTGCAAGTACC	136-148	3	Chru		Unpub01	
TerpSH1	AY156709	(AGAT) ₁₅	R: GCTACACCAGTTTCACTCIGC F: CCACTGGGATCTAATCACTT	254-302	12	Mate		68	69
TerpSH2	AY156710	(AGAT) ₁₂	R: GGCAACTTAGCAT F: GCCAGCAGGAGGAGTAATG	171–227	12	Mate		68	69
TerpSH3	AY156711	(CAAA) ₁₄	R: CTATTAGGGCAGAGACGAG F: TCCCCCAATGCACAC	283–311	8	Mate		68	69
TerpSH5	AY156713	(CTAT) ₁₂	R: CIGC*CCAAICCAITIAGA F: TTGCTGCTATATGCTTAAT	157–189	8	Mate		68	69
TerpSH7	AY156715	(AGAT) ₁₃	R: CCTCCCTGCCTATTGA F: CACACACACTGTATTTTGATA	97–137	10	Mate		68	69
TerpSH8	AY156716	(GA) ₁₉	R: CTATGCCCTTTCTAGTTIG F: CCAAATTAAATATCTACC	193–221	14	Mate		68	69
Test10	AY822052	(AC) ₁₅ (TA) ₂ (GA) ₂	R: AGCCTTTCCAGTATTCAGTA F: AGACTCTCTGTGATGGTAATAGCA	194–228	10	Tehe		52	
Test21	AY822048	(CA) ₁₀ (CT) ₅	R: GATTTICATIGGCATATAAGACACA F: AAACTGGCTGAAACCCAGC	203–235	9	Tehe		68	
Test56	AY822049	(CT) ₆ GCT(CA) ₁₂	R: TIGGGAGITIGACIGAICIAGGA F: GATATGCAGGCAAACAGGCT	199–205	3	Tehe		68	
Test71	AY822050	(AC) ₉	R: CAGGAATCIGIGCAIGATIGA F: GATTGTGGTCACATATAGAGGAGG	126-130	3	Tehe		68	
Test76	AY822051	(CA) ₈	R: IGIIGIACITAGCIGIICIGAICIAII F: GAATTCTAACTTTTCTCTGTGGAGC	116–118	2	Tehe		68	
Test88	AY822053	(TC) ₁₀ (AC) ₈	R: TCTTATTGCATATCTGAGTACAGAAG F: TTTCCACAGAAAGGAGGAGC	iA 181–209	5	Tehe		68	
tle10f		AC	R: CAAATIGAATAAACAGAGTTTICCC F: TTCTGCTTCTGTGGTTCCACC	139-155	6	Emma	ELSE	Unpub01	
tle13.1		TG	R: CIGIATTICAAGGACICIGCC F: TGGGTCTAATTCAGTGAAGAG	197-221	20	Emma	ELSE	Unpub01	
tle13.3		TG	R: TGAGTTTCAGGCATCTCCTCG F: GTGTCAGCCCTCCAGAATGTC	110-168		Emma		Unpub01	
tle6.2		GT	R: TCAACGAGAAGCAAATTGAAG F: GTTTACAGTTCACCTCTTCAG	97-129	22	Emma		Unpub01	
tle7.2		CA	F: ACAGCCATCACGTATTGTGCC	121-141	12	Emma		Unpub01	
tle16.31		AC	F: GACCCTAATCCCCTCCTAATCC	231-309	36	Emma	ELSE	Unpub01	
tle19.1		CTT	R: CCAACCCTICIGACICICACIC F: CTACCACCTGCTTTACCAACC	181-202	8	Emma	ELSE	Unpub01	
tle19.3		AC	F: CAGCGTTTTGCCCATGGTAAG	253-299	24	Emma		Unpub01	
tle23.41		(GCT) ₄ CCT(GCT) ₄	F: CACCCAAGAATACCAGTCACTCC	176	1	Emma		Unpub01	
tle28.21		AC	F: GCTTTGCCTATCATCATCTCTGC	133-173	17	Emma	ELSE	Unpub01	
tle31.1		(TC) ₁₄ (AC) ₁₀	F: TAACGGAAGGTCTTCAAAAGGTC	270-384	26	Emma		Unpub01	
TWS190	DQ398951	(TC)9	F: TTGTTCTGCCATCAGTCAGC R: ATCCCCTTACCACCAACTCC	091–097	3	Tewe	Tema	130	

TWL61	DQ398949	(CA)13	F: CCAACCCTGTAGGACTGAAGC	137–171	9	Tewe	Tema	130
TWR106	DQ398952	(CT)11(CA)19	F: ACAATCCCACACTCCTTTGC R: CTCACCTTTGGCCCCTTCC	171–227	10	Tewe	Tema	130
TWL221	DQ398955	(TG)12 (TCTG)6TC	F: TGCTGGCTGAAGTTTACAGAG R: CCAGAAGCTGAAGCAACTCC	217–267	6	Tewe	Tema	130
TWMD51	DQ398956	(AC)7	F: CACTGGGCAGAAACCAGAAG R: GCTGCATGTGGGCTCTTTTAC	249–251	2	Tewe	Tema	130
TWI61	DQ398953	(GT)11(GA)10	F: TATTTCAGGCGTGGAGCAAC R: CAATGGGCTACTTGCCTACC	242–344	19	Tewe	Tema	130
TWT113	DQ398954	(TC)10	F: CTTTTAGGCTGGGCTGATTG R: ATGCAACCCCAGTACCTCTG	276–286	5	Tewe	Tema	130
TWQ113	DQ398950	(CT)12	F: CAGAGGACGTGAGCGAGAG R: TTGAGGATGTTGTAGAGGATGC	281–293	6	Tewe	Tema	130
59HDZ131	DQ464448	(CA)12	F:AAGTTCAGACTGGGCAGGG R:CCACCTTCAGACACACACTCAC	204–220	4	Erma		136
59HDZ188	DQ464447	(CA)9	F:CTCAAACCAGGGGCTAAAG R:CTATTTCAGGCTGTGGGAGG	208–214	3	Erma		136
59HDZ196	DQ464449	(GT)21	F:AGGATTCAAACAGTGGAGTGC R:CCCAGACAATGACTAACAAACC	196–220	5	Erma		136
59HDZ234	DQ464450	(CTTT)5	F:CTCCCACGAAATCTCATGC R:TGTAAGATGCTGGCAAAAGTG	231–235	3	Erma		136
59HDZ242	DQ464451	(GT)17	F:AGCGGAGAGAGGGGGGAAC R:TGAAACAAAGGGGCAATCC	078–094	5	Erma		136
59HDZ327	DQ464452	(TC)8(AC)7AAAA(TC)8(AC) 8AATT(TC)9TT(TC)8(AC)11	F:ACACAGGGTCCATCCACTTC R:TCAGCAAAACAAGCAACGAG	308–316	4	Erma		136
59HDZ397	DQ464453	(GT)7	F:GAACGCACCAGAACGCAG R:CCCAGAACGCTCCTACATTG	140–160	4	Erma		136
59HDZ499	DQ464454	(CA)9GA(CA)3 GC(CA)14	F:GTGAGCCCCCAAATSCCC R:TGCTGGACAACTAATCTTTTCTATC	187–205	8	Erma		136
59HDZ669	DQ464455	(GT)9	F:CCAGGACATCTTAGACTACTGTTCC R:CACTATTTAGGCTTTTCATTCTGC	225–229	4	Erma		136
59HDZ777	DQ464456	(CA)20	F:GAAAAAAAAAGGGGTGGGG R:AGGGAGTTAGGGGGTTGTAGGAG	134–148	7	Erma		136
59HDZ897	DQ464457	(GT)13	F:TGTGTGGAGAGAGGGATGGTTC R:GTATGCTTAACCCCCACCTC	147–159	6	Erma		136

described in *G. polyphemus* [Schwartz et al., 2003]). Locus GP61 exhibits two different motif states in *G. agassizii*; alleles having greater than 16 repeats have a simple dinucleotde motif, $(GT)_{16+}$, but alleles that score in the range of 10–12 repeats possess a compound motif, $(GT)_4AT(GT)_6$ (Edwards, unpubl. data; Tables 3 and 4). For this locus a single *G. agassizii* individual can be homozygous for either motif or heterozygous for both motifs. Knowledge of the different allelic states can help researchers choose the best model for their analysis, such that an infinite allele model might be a better choice for analyses of these data than a stepwise model of evolution.

While motif differences among species may not affect the utility of a marker within a species, changes that occur across populations within a species might reveal more significant evolutionary changes that would be masked during fragment analysis without subsequent sequencing. For example, locus Goag05 was originally described in Gopherus agassizii from samples collected in the Sonoran Desert (Tables 3 and 4; Edwards et al., 2003). Fragment analysis of this locus in G. agassizii samples collected from the Mojave Desert reveal amplicon lengths in the range of those observed in the Sonoran samples. However, comparison of locus sequences from both populations revealed fixed differences in the motif indicating that there has been significant evolutionary change between the populations and that gene flow does not occur (Edwards, unpubl. data; Tables 3 and 4). It might also be implied that the motif observed in the Mojave Desert samples is derived from the Sonoran Desert motif. The nucleotide sequence of the flanking regions surrounding the motif also revealed single nucleotide polymorphisms (SNPs) between the two populations. Although microsatellites are generally best applied to genetic studies within a species, these examples suggest that sequencing STR loci and their flanking regions can reveal potentially neutral, autosomal SNPs that imply deeper evolutionary changes and are applicable for inter-species phylogenetic studies.

The development of molecular tools for freshwater turtles and tortoises is not complete. Obviously there is great potential in exploring and applying entirely new molecular techniques, such as sequencing entire mitochondrial genomes (Parham et al., 2006a,b), development of additional informative nuclear markers (Fujita et al., 2004), or microarrays and beyond. Indeed, there are many questions and many species that will require development of new markers or new approaches. However, there is still much to be learned about the biology and conservation of freshwater turtles and tortoises by simply applying the wide array of molecular markers that are already available today. For the majority of common

 Table 4. Observed motif differences from cross-species amplification of microsatellite loci.

Locus	Species	Motif
Cm58	Chelonia mydas	(CA) ₁₃
	Gopherus agassizii	$(CA)_2CG(CT)_4$
GP81	Gopherus polyphemus	$(GT)_{11}(GA)_{10}$
	Gopherus agassizii	(GT) ₀ GACA(GA) ₈
GP61	Gopherus polyphemus	(GT) ₁₂
	Gopherus agassizii (allelic state 1)	(GT) ₁₆₊
	Gopherus agassizii (allelic state 2)	(GT) ₄ AT (GT) ₆
Goag05	Gopherus agassizii (Sonoran)	(GAT) 20
0	Gopherus agassizii (Mojave)	GACGAA(GAT)2GACGAA

applications in most species, all the tools needed already exist and are consolidated here. It should be noted, however, that the tables we provide here are incomplete, as many researchers have not included in their publications information such as GenBank accession numbers, STR motifs, expected amplicon size, or other species that a primer might have utility in. We urge those in the research community contributing such data to the scientific literature to include as much information as possible. We are entering a new era in which the cost and time associated with the development of molecular markers should not hinder researchers hoping to apply molecular approaches to important challenges in turtle biology and conservation.

Acknowledgments. — This material is based upon work supported by the NSF under grant # DEB-0507916 for the Turtle Genetics workshop held from 7–12 August 2005 at Harvard University. Additional financial support for the workshop came from the Museum of Comparative Zoology (Harvard University), Chelonian Research Foundation, and Conservation International. We thank the many individuals contributed unpublished information for this compilation and we especially thank Brad Shaffer for providing the impetus for this work and Anders Rhodin for his careful and dedicated editing of this volume.

LITERATURE CITED

- AGGARWAL, R., T. VELAVAN, D. UDAYKUMAR, P. HENDRE, K. SHANKER, B. CHOUDHURY, AND L. SINGH. 2004. Development and characterization of novel microsatellite markers from the olive ridley seaturtle (*Lepidochelys olivacea*). Molecular Ecology Notes 4:77-79.
- ALBIN, K.C. 2001. Design of primers for amplification of mitochondrial control region DNA in Blanding's turtle (*Emydoidea blandingii*). B.Sc. Honours Thesis, Saint Mary's University, Halifax, Nova Scotia.
- ALLARD, M.W., M.M. MIYAMOTO, K.A. BJORNDAL, BOLTENA.B., AND B.W. BOWEN. 1994. Support for natal homing in green turtles from mitochondrial DNA sequences. Copeia 1994:34-41.
- ÁLVAREZ, Y., J.A. MATEO, A.C. ANDREU, C. DIAZ-PANIAGUA, A. DIEZ, AND J.M. BAUTISTA. 2000. Mitochondrial DNA haplotyping of *Testudo graeca* on both sides of the Straits of Gibraltar. Journal of Heredity 91:39-41.
- AREVALO, E., S.K. DAVIS, AND J.W. SITES. 1994. Mitochondrial DNA sequence divergence and phylogenetic relationships among eight chromosome races of the *Sceloporus grammicus* complex (Phrynosomatidae) in central Mexico. Systematic Biology 43:387-418.
- ARMSTRONG, M.H., E.L. BRAUN, AND R.T. KIMBALL. 2001. Phylogenetic utility of avian ovomucoid intron G: A comparison of nuclear and mitochondrial phylogenies in galliformes. Auk 118:799-804.
- AUSTIN, J.J. AND E.N. ARNOLD. 2001. Ancient mitochondrial DNA and morphology elucidate and extinct island radiation of Indian Ocean giant tortoises (*Cylindraspis*). Proc. Royal Soc. Lond, Series B 268:2515-2523.
- AUSTIN, J.J., E.N. ARNOLD, AND R. BOUR. 2002. The provenance of type specimens of extinct Mascarene Island giant tortoises (*Cylindraspis*) revealed by ancient mitochondrial DNA sequences. Journal of Herpetology 36:280-285.

- AUSTIN, J.J., E.N. ARNOLD, AND R. BOUR. 2003. Was there a second adaptive radiation of giant tortoises in the Indian Ocean? Using mitochondrial DNA to investigate speciation and biogeography of *Aldabrachelys* (Reptilia, Testudinidae). Molecular Ecology Notes 12:1415-1424.
- AVISE, J.C. 1994. Molecular markers, natural history and evolution. Chapman & Hall, NewYork.
- 11. AVISE, J.C. 2004. Molecular Markers, Natural History and Evolution (Second Edition). Sinauer, Sunderland, MA.
- BARKER, F.K., G.F. BARROWCLOUGH, AND J.G. GROTH. 2002. A phylogenetic hypothesis for passerine birds: taxonomic and biogeographic implications of an analysis of nuclear DNA sequence data. Proceedings of Royal Society of London Biology 269:295–308.
- BARTH, D., D. BERNHARD, G. FRITZSCH, AND U. FRITZ. 2004. The freshwater turtle genus *Mauremys* (Testudines, Geoemydidae) - a textbook example of an east-west disjunction or a taxonomic misconcept? Zoologica Scripta 33:213-221.
- BARTH, D., D. BERNHARD, D. GUICKING, M. STÖCK, AND U. FRITZ. 2003. Is *Chinemys megalocephala* Fang, 1934 a valid species? New insights based on mitochondrial DNA sequence data. Salamandra 38:213-232.
- BEHEREGARAY, L.B., C. CIOFI, A. CACCONE, J.P. GIBBS, AND J.R. POWELL. 2003. Genetic divergence, phylogeography and conservation units of giant tortoises from Santa Cruz and Pinzón, Galápagos Islands. Conservation Genetics 4:31-46.
- BICKHAM, J.W., T. LAMB, P. MINX, AND J.C. PATTON. 1996. Molecular systematics of the genus *Clemmys* and the intergeneric relationships of Emydid turtles. Herpetologica 52:89-97.
- BIRKS, S.M. AND S.V. EDWARDS. 2002. A phylogeny of the megapodes (Aves: Megapodiidae) based on nuclear and mitochondrial DNA sequences. Molecular Phylogenetics and Evolution 23:408-421.
- BOORE, J.L. 1999. Animal mitochondrial genomes. Nucleic Acids Research 27:1767-1780.
- BOWEN, B.W., A.L. BASS, AND L. SOARES. 2005. Conservation implications of complex population structure: lessons from the loggerhead turtle (*Caretta caretta*). Molecular Ecology 14:2389-2402.
- BRITTEN, H.B., B.R. RIDDLE, P.F. BRUSSARD, R. MARLOW, AND T.E. LEE JR. 1997. Genetic delineation of management units for the desert tortoise, *Gopherus agassizii*, in northeastern Mojave Desert. Copeia 1997:523-530.
- BROWN, W.M., M. GEORGE JR., AND A.C. WILSON. 1979. Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences of the USA 76:1967-1971.
- BRUFORD, M.W. AND R.K. WAYNE. 1993. Microsatellites and their application to population genetic studies. Current Opinions in Genetic Development 3:939-43.
- BURNS, C., C. CIOFI, L.B. BEHEREGARAY, T.H. FRITTS, J.P. GIBBS, C. MÁRQUEZ, M.C. MILINKOVITCH, J.R. POWELL, AND A. CACCONE. 2003. The origin of captive Galápagos tortoise based on DNA analysis: implications for the management of natural populations. Animal Conservation 6:329-337.
- BUSKIRK, J.R., J.F. PARHAM, AND C.R. FELDMAN. 2005. On the hybridisation between two distantly related Asian turtles (Testudines: *Sacalia* and *Mauremys*). Salamandra 41:21-26.
- CACCONE, A., G. AMATO, O.C. GRATRY, J. BEHLER, AND J.R. POWELL. 1999. A molecular phylogeny of four endangered Madagascar tortoises based on mtDNA sequences. Molecular Phylogenetics and Evolution 12:1-9.
- CACCONE, A., G. GENTILE, C.E. BURNS, E. SEZZI, W. BERGMAN, M. RUELLE, K. SALTONSTALL, AND J.R. POWELL. 2004. Extreme difference in rate of mitochondrial and nuclear DNA evolution in a large ectotherm, Galápagos tortoises. Molecular Phylogenetics and

Evolution 31:794-798.

- CACCONE, A., G. GENTILE, J.P. GIBBS, T.H. FRITTS, H.L. SNELL, J. BETTS, AND J.R. POWELL. 2002. Phylogeography and history of Giant Galápagos tortoises. Evolution 56:2052-2066.
- CACCONE, A., J.P. GIBBS, V. KETMAIER, E. SUATONI, AND J.R. POWELL. 1999. Origin and evolutionary relationships of giant Galápagos tortoise. Proceedings of the National Academy of Sciences of the USA 96:13223-13228.
- 29. CHIEN, J.-T., I. CHOWDHURY, Y.-S. LIN, C.-F. LIAO, S.-T. SHEN, AND J.Y.-L. YU. 2006. Molecular cloning and sequence analysis of a cDNA encoding pituitary thyroid stimulating hormone -subunit of the Chinese soft-shell turtle *Pelodiscus sinensis* and regulation of its gene expression. General and Comparative Endocrinology 146:74-82.
- CHIEN, J.-T., S.-T. SHEN, Y.-S. LIN, AND J.Y.-L. YUA. 2005. Molecular cloning of the cDNA encoding follicle-stimulating hormone subunit of the Chinese soft-shell turtle *Pelodiscus sinensis*, and its gene expression. General and Comparative Endocrinology 141:190-200.
- CIOFI, C., M.C. MILINKOVITCH, J.P. GIBBS, A. CACCONE, AND J.R. POWELL. 2002. Microsatellite analysis of genetic divergence among populations of giant Galapagos tortoises. Molecular Ecology 11:2265-2283.
- CRIM, J.L., L.D. SPOTILA, J.R. SPOTILA, M. O'CONNOR, R. REINA, C.J. WILLIAMS, AND F.V. PALADINO. 2002. The leatherback turtle, *Dermochelys coriacea*, exhibits both polyandry and polygyny. Molecular Ecology 11:2097-2106.
- CRONIN, M.A., S. HILLIS, E.W. BORN, AND J.C. PATTON. 1994. Mitochondrial DNA variation in Atlantic and Pacific walruses. Canadian Journal of Zoology 72:1035-1042.
- 34. CRONIN, M.A., W.J. SPEARMAN, R.L. WILMOT, J.C. PATTON, AND J.W. BICKHAM. 1993. Mitochondrial DNA variation in Chinook salmon (*Oncorhynchus tshawytscha*) and chum salmon (*O. keta*) detected by restriction enzyme analysis of polymerase chain reaction (PCR) products. Canadian Journal of Fisheries and Aquatic Sciences 50:708-715.
- CUNNINGHAM, J., E.H.W. BAARD, E.H. HARLEY, AND C. O'RYAN. 2002. The investigation of geneticdiversity in severely fragmented geometric tortoises (*Psammobates geometricus*) populations. Conservation Genetics 3:215-223.
- DIESMOS, A.C., J.F. PARHAM, B.L. STUART, AND R.M. BROWN. 2005. The phylogenetic position of the recently rediscovered Philippine forest turtle (Bataguridae: *Heosemys leytensis*). Proceedings of the California Academy of Sciences 56:31-41.
- DUDA JR., T.F. AND S. PALUMBI. 1999. Developmental shifts and species selection in gastropods. Proceedings of the National Academy of Sciences of the USA 96:10272-10277.
- DUDA, T.F.J. AND S. PALUMBI. 1999. Developmental shifts and species selection in gastropods. Proceedings of the National Academy of Sciences of the USA 96:10272-10277.
- EDWARDS, T. 2003. Desert tortoise conservation genetics. M.S. Thesis, University of Arizona, Tucson.
- EDWARDS, T., C.S. GOLDBERG, M.E. KAPLAN, C.R. SCHWALBE, AND D.E. SWANN. 2003. PCR primers for microsatellite loci in the desert tortoise (*Gopherus agassizii*, Testudinidae). Molecular Ecology Notes 3:589-591.
- EDWARDS, T., C.R. SCHWALBE, D.E. SWANN, AND C.S. GOLDBERG. 2004. Implications of anthropogenic landscape change on interpopulation movements of the desert tortoise (*Gopherus agassizii*). Conservation Genetics 5:485-499.
- ENGSTROM, T.N. AND W.P. McCORD. 2002. Molecular support for the taxonomic conclusions of McCord and Pritchard (2002), regarding *Chitra*. Hamadryad 27:57-61.

- ENGSTROM, T.N., H.B. SHAFFER, AND W.P. McCORD. 2002. Phylogenetic diversity of endangered and critically endangered southeast Asian softshell turtles (Trionychidae: *Chitra*). Biological Conservation 104:173-179.
- ENGSTROM, T.N., H.B. SHAFFER, AND W.P. MCCORD. 2004. Multiple data sets, high homoplasy, and the phylogeny of softshell turtles (Testudines: Trionychidae). Systematic Biology 53:693-710.
- FELDMAN, C.R. AND J.F. PARHAM. 2002. Molecular phylogenetics of Emydine turtles: taxonomic revision and the evolution of shell kinesis. Molecular Phylogenetics and Evolution 22:388-398.
- FELDMAN, C.R. AND J.F. PARHAM. 2004. Molecular systematics of old world stripe-necked turtles (Testudines: *Mauremys*). Asiatic Herpetological Research 10:28-37.
- FITZSIMMONS, N.N. 1998. Single paternity of clutches and sperm storage in the promiscuous green turtle (*Chelonia mydas*). Molecular Ecology 7:575-584.
- FITZSIMMONS, N.N., C. MORITZ, C.J. LIMPUS, L. POPE, AND R. PRINCE. 1997. Geographic structure of mitochondrial and nuclear gene polymorphisms in Australian green turtle populations and male-biased gene flow. Genetics 147:1843-1854.
- FITZSIMMONS, N.N., C. MORITZ, AND S.S. MOORE. 1995. Conservation and dynamics of microsatellite loci over 300 million years of marine turtle evolution. Molecular Biology and Evolution 12:432-440.
- FITZSIMMONS, N.N., C. MORITZ, AND S.S. MOORE. 1995. Conservation and dynamics of microsatellite loci over 300 million years of marine turtle evolution. Molecular Biology and Evolution 12:432-440.
- FOLMER, O., M. BLACK, W. HOEH, R. LUTZ, AND R. VRJENHOEK. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3:294-299.
- FORLANI, A., B. CRESTANELLO, S. MANTOVANI, B. LIVOREIL, L. ZANE, G. BERTORELLE, AND L. CONGIU. 2005. Identification and characterization of microsatellite markers in Hermann's tortoise (*Testudo hermanni*, Testudinidae). Molecular Ecology Notes 5:228-230.
- FRANCISCO, A. 2001. Contrasting population structure of the loggerhead turtle (*Caretta caretta*) using mitochondrial and nuclear DNA markers. M.S. Thesis, University of Florida, Gainesville.
- FREEDBERG, S., M.A. EWERT, B.J. RIDENHOUR, M. NEIMAN, AND C.E. NELSON. 2005. Nesting fidelity and molecular evidence for natal homing in the freshwater turtle, *Graptemys kohnii*. Proceedings of the Royal Society Biological Sciences Series B. 272 1345-1350.
- FRIESEN, V.L., B.C. CONGDON, H.E. WALSH, AND T.P. BIRT. 1997. Intron variation in marbled murrelets detected using analyses of single-stranded conformational polymorphisms. Molecular Ecology 6:1047-1058.
- FRITZ, U., M. BARATA, S.D. BUSACK, G. FRITZSCH, AND R. CASTILHO. 2006. Impact of mountain chains, sea straits and peripheral populations on genetic and taxonomic structure of a freshwater turtle, *Mauremysleprosa* (Reptilia, Testudines, Geoemydidae). Zoologica Scripta 35:97–108.
- 57. FRITZ, U., A. CADI, M. CHEYLAN, C. COÏC, M. DÉTAINT, A. OLIVIER, E. ROSECCHI, D. GUICKING, P. LENK, U. JOGER, AND M. WINK. 2005. Distribution of mtDNA haplotypes (cyt b) of *Emys orbicularis* in France and implications for postglacial recolonization. Amphibia-Reptilia 26:231-238.
- FRITZ, U., T. FATTIZZO, D. GUICKING, S. TRIPEPI, M.G. PENNISI, P. LENK, U. JOGER, AND M. WINK. 2005. A new cryptic species of pond turtle from southern Italy, the hottest spot in the range of the genus *Emys* (Reptilia, Testudines, Emydidae). Zoologica Scripta 34:351-371.
- 59. Fritz, U., D. GUICKING, P. LENK, U. JOGER, AND M. WINK. 2004.

When turtle distribution tells European history: mtDNA haplotypes of *Emys orbicularis* reflect in Germany former division by the Iron Curtain. Biologia, Bratislava 59/Suppl.:19-25.

- 60. FRITZ, U., P. SIROKY, H. KAMI, AND M. WINK. 2005. Environmentally caused dwarfism or a valid species—is *Testudo weissingeri* Bour, 1996 a distinct evolutionary lineage? New evidence from mitochondrial and nuclear genomic markers. Molecular Phylogenetics and Evolution 37:389-401.
- FUJITA, M.F., T.N. ENGSTROM, D.E. STARKEY, AND H.B. SHAFFER. 2004. Turtle phylogeny: insights from a novel nuclear intron. Molecular Phylogenetics and Evolution 31:1031-1040.
- 62. GAUR, A., A. REDDY, S. ANNAPOORNI, B. SATYAREBALA, AND S. SHIVAJI. 2006. The origin of Indian Star tortoises (*Geochelone elegans*) based on nuclear and mitochondrial DNA analysis: A story of rescue and repatriation. Conservation Genetics 7:231-240.
- 63. GEORGES, A., J. BIRRELL, K.M. SAINT, W.P. MCCORD, AND S.C. DONNELLAN. 1998. A phylogeny for side-necked turtles (Chelonia: Pleurodira) based on mitochondrial and nuclear gene sequence variation. Biological Journal of the Linnean Society 67:213-246.
- GRAYBEAL, A. 1994. Evaluating the phylogenetic utility of genes: A search for genes informative about deep divergences among vertebrates. Systematic Biology 43:174–193.
- GROTH, J.G. AND G.F. BARROWCLOUGH. 1999. Basal divergences in birds and the phylogenetic utility of the nuclear RAG-1 gene. Molecular Phylogenetics and Evolution 12:115-123.
- GUICKING, D., U. FRITZ, M. WINK, AND E. LEHR. 2002. New data on the diversity of the Southeast Asian leaf turtle genus *Cyclemys* Bell, 1834. Molecular results. Faunistische Abhandlungen, Museum für Tierkunde Dresden 23:75-86.
- HARE, M.P. 2001. Prospects for nuclear gene phylogeography. Trends in Ecology and Evolution 16:700-706.
- HAUSWALDT, J.S. AND T.C. GLENN. 2003. Microsatellite DNA loci from the Diamondback terrapin (*Malaclemysterrapin*). Molecular Ecology Notes 3:174-176.
- HAUSWALDT, S.J. AND T.C. GLENN. 2005. Population genetics of the diamondback terrapin (*Malaclemysterrapin*). Molecular Ecology 14:723-732.
- HEDGES, S.B., R.A. NUSSBAUM, AND L.R. MAXSON. 1993. Caecilian phylogeny and biogeography inferred from mitochondrial DNA sequences of the 12S rRNA and 16S rRNA genes (Amphibia: Gymnophicna). Herpetological Monographs 7:64-76.
- HEDGES, S.B. AND L.L. POLING. 1999. A molecular phylogeny of reptiles. Science 283:998-1001.
- HILLIS, D.M., C. MORITZ, AND B.K. MABLE. 1996. Molecular systematics. Sinauer Associates, Sunderland, MA.
- HOEKERT, W.E.J., H. NEUFÉGLISE, A.D. SCHOUTEN, AND S.B.J. MENKEN. 2002. Multiple paternity and female-biased mutation at a microsatellite locus in the olive ridley sea turtle (*Lepidochelys olivacea*). Heredity 89:107-113.
- HONDA, M., Y. YASUKAWA, R. HIRAYAMA, AND H. OTA. 2002. Phylogenetic relationships of the Asian Box turtles of the genus *Cuora* sensu lato (Reptilia: Bataguridae) inferred from mitochondrial DNA sequences. Zoolical Science 19: 1305-1312. 19:1305-1312.
- 75. HONDA, M., Y. YASUKAWA, AND H. OTA. 2002. Phylogeny of the Eurasian freshwater turtles of the genus *Mauremys* Gray 1869 (Testudines), with special reference to a close afinity of *Mauremys japonica* with *Chinemys reevesii*. Journal of Zoological Systematics and Evolutionary Research 40:195-200.
- HSIEH, H.-M., L.-H. HUANG, L.-C. TSAI, C.-L. LIU, Y.-C. KUO, C.-T. HSIAO, A. LINACRE, AND J.C.-I. LEE. 2006. Species identification of *Kachuga tecta* using the Cytochrome b gene. Journal of Forensic Science 51:52-56.
- 77. IVERSON, J.B., P.Q. SPINKS, H.B. SHAFFER, W.P. MCCORD, AND I.

DAS. 2001. Phylogenetic relationships among the Asian tortoises of the Genus *Indotestudo* (Reptilia: Testudines: Testudinidae). Hamadryad 26:272-275.

- JANZEN, F.J., S.L. HOOVER, AND H.B. SHAFFER. 1997. Molecular phylogeography of the western pond turtle (*Clemmys marmorata*): preliminary results. Chelonian Conservation and Biology 2:623-626.
- JOHNSTON, E.E., M.S. RAND, AND S.G. ZWEIFEL. 2006. Detection of multiple paternity and sperm storage in a captive colony of the central Asian tortoise, *Testudo horsfieldii*. Canadian Journal of Zoology 84:520-526.
- KICHLER, K., M.T. HOLDER, S.K. DAVIS, R. MÁRQUEZ-M, AND D.W. OWENS. 1999. Detection of multiple paternity in Kemp's ridley sea turtle with limited sampling. Molecular Ecology 8:819-830.
- KING, T.L. AND S.E. JULIAN. 2004. Conservation of microsatellite DNA flanking sequence across 13 Emydid genera assayed with novel bog turtle (*Glyptemys muhlenbergii*) loci. Conservation Genetics 5:719-725.
- KOCHER, T.D., W.K. THOMAS, A.T. MEYER, S.V. EDWARDS, S. PÄÄBO, F.X. VILLABLANCA, AND A.C. WILSON. 1989. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proceedings of the National Academy of Sciences of the USA 86:6196-6200.
- KRENZ, J.G., G.J.P. NAYLOR, H.B. SHAFFER, AND F.J. JANZEN. 2005. Molecular phylogenetics and evolution of turtles. Molecular phylogenetics and Evolution 37:178-191.
- Kuo, C. AND F.J. JANZEN. 2004. Genetic effects of a persistent bottleneck on a natural population of ornate box turtles (*Terrapene ornata*). Conservation Genetics 5:425-437.
- KURAKU, S., J. ISHIJIMA, C. NISHIDA-UMEHARA, K. AGATA, S. KURATANI, AND Y. MATSUDA. 2006. cDNA-based gene mapping and GC3 profiling in the soft-shelled turtle suggest a chromosomal size-dependent GC bias shared by sauropsids. Chromosome Research 14:187–202.
- KURAKU, S., R. USUDA, AND S. KURATANI. 2005. Comprehensive survey of carapacial ridge-specific genes in turtle implies cooption of some regulatory genes in carapace evolution. Evolution and Development 7:3-17.
- LAMB, T. AND C. LYDEARD. 1994. A molecular phylogeny of the gopher tortoises, with comments on familial relationships within the Testudinoidea. Molecular Phylogenetics and Evolution 3:283-291.
- LAMB, T., C. LYDEARD, R.B. WALKER, AND J.W. GIBBONS. 1994. Molecular systematics of map turtles (*Graptemys*): A comparison of mitochondrial restriction site versus sequence data. Systematic Biology 43:543-559.
- LAMB, T. AND M.F. OSENTOSKI. 1997. On the paraphyly of Malaclemys: a molecular genetic assessment. Journal of Herpetology 31:258-265.
- LE, M., C.J. RAXWORTHY, W.P. MCCORD, AND L. MERTZ. 2006. A molecular phylogeny of tortoises (Testudines: Testudinidae) based on mitochondrial and nuclear genes. Molecular Phylogenetics and Evolution 40:517–531.
- LENK, P., U. FRITZ, U. JOGER, AND M. WINK. 1999. Mitochondrial phylogeography of the European pond turtle, *Emys orbicularis* (Linnaeus 1758). Molecular Ecology 8:1911-1922.
- LENK, P., U. JOGER, U. FRITZ, P. HEIDRICH, AND M. WINK. 1998. Phylogeographic patterns in the mitochondrial cytochrome b gene of the European pond turtle (*Emys orbicularis*): first results. Mertensiella 10:159-175.
- LENK, P. AND M. WINK. 1997. A RNA/RNA heteroduplex cleavage analysis to detect rare mutations in populations. Molecular Ecology 6:687-690.
- LESIA, M., G.A. MARGARETHA, D. HOFMEYR, AND M.E. D'AMATO.
 2003. Genetic variation in three *Chersina angulata* (angulate

tortoise) populations along the west coast of South Africa. African Zoology 38:109-117.

- LESSA, E.P. AND G. APPLEBAUM. 1993. Screening techniques for detecting allelic variation in DNA sequences. Molecular ecology 2:119-129.
- LEUTERITZ, T.E.J., T. LAMB, AND J.C. LIMBERAZA. 2005. Distribution, status, and conservation of radiated tortoises (*Geochelone radiata*) in Madagascar. Biological Conservation 124:451-461.
- LIBANTS, S., A.M. KAMARAINEN, K.T. SCRIBNER, AND J.D. CONGDON. 2004. Isolation and cross-species amplification of seven microsatellite loci from *Emydoidea blandingii*. Molecular Ecology Notes 4:300-302.
- LIVOREIL, B. AND A.C. VAN DER KUYL. 2005. Genetic analysis of mitochondrial DNA variation in eastern and western African spurred tortoises, *Geochelone sulcata*. Chelonian Conservation and Biology 4:951-954.
- LOYTYNOJA, A. AND N. GOLDMAN. 2005. An algorithm for progressive multiple alignment of sequences with insertions. Proc. Nat. Acad. Sci. USA 102:10557-10562.
- 100. MANEL, S., P. BERTHIER, AND G. LUIKART. 2002. Detecting wildlife poaching: identifying the origin of individuals with Bayesian assignment tests and multilocus genotypes. Conservation Biology 16:650-659.
- 101. MANTZIOU, G., A. ANTONIOU, N. POULAKAKIS, G. GOULIELMOS, C.S. TSIGENOPOULOS, T. PINOU, AND M. MYLONAS. 2005. Isolation and characterization of six polymorphic microsatellite markers in the freshwater turtle *Mauremys rivulata* (Testudines: Geoemydidae). Molecular Ecology Notes 5:727-729.
- 102. MATSUDA, Y., C. NISHIDA-UMEHARA, H. TARUI, A. KUROIWA, K. YAMADA, T. ISOBE, J. ANDO, A. FUJIWARA, Y. HIRAO, O. NISHIMURA, J. ISHIJIMA, A. HAYASHI, T. SAITO, T. MURAKAMI, Y. MURAKAMI, S. KURATANI, AND K. AGATA. 2005. Highly conserved linkage homology between birds and turtles: bird and turtle chromosomes are precise counterparts of each other. Chromosome Research 13:601–615.
- 103. McCord, W.P., J.B. IVERSON, P.Q. SPINKS, AND H.B. SHAFFER. 2000. A new genus of geoemydid turtle from Asia. Hamadryad 25:20-24.
- 104. MCLUCKIE, A.M., T. LAMB, C.R. SCHWALBE, AND R.D. MCCORD. 1999. Genetic and morphometric assessment of an unusual tortoise (*Gopherus agassizii*) population in the Black Mountains of Arizona. Journal of Herpetology 33:36-44.
- 105. MEYER, A., T.D. KOCHER, P. BASASIBWAKI, AND A.C. WILSON. 1990. Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature 347:550-553.
- 106. MINDELL, D.P., M.D. SORENSON, AND D.E. DIMCHEFF. 1998. An extra nucleotide is not translated in mitochondrial ND3 of some birds and turtles. molecular Biology and Evolution 15:1568-1571.
- 107. MINDELL, D.P., M.D. SORENSON, D.E. DIMCHEFF, M. HASEGAWA, J.C. AST, AND T. YURI. 1999. Interordinal relationships of birds and other reptiles based on whole mitochondrial genomes. Systematic Biology 48:138-152.
- 108. MOCKFORD, S.W., L. MCEACHERN, T.B. HERMAN, M. SNYDER, AND J.M. WRIGHT. 2005. Population genetic structure of a disjunct population of Blanding's turtle (*Emydoidea blandingii*) in Nova Scotia, Canada. Biological Conservation 123:373-380.
- 109. MOON, J.C., E.D. MCCOY, H.R. MUSHINSKY, AND S.A. KARL. 2006. Multiple paternity and breeding system in the gopher tortoise, *Gopherus polyphemus*. Journal of Heredity 97:150-157.
- 110. MOORE, M.K. AND R.M. BALL. 2002. Multiple paternity in loggerhead turtle (*Caretta caretta*) nests on Melbourne Beach, Florida: a microsatellite analysis. Molecular Ecology 11:281-288.
- 111. MOORE, W.S. 1995. Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nuclear-gene trees. Evolu-

tion 49:718-726.

- 112. NEAR, T.J., P.A. MEYLAN, AND H.B. SHAFFER. 2005. Assessing concordance of fossil calibration points in molecular clock studies: an example using turtles. American Naturalist 165:137-146.
- 113. NORMAN, J.A., C. MORITZ, AND C.J. LIMPUS. 1994. Mitochondrial DNA control region polymorphisms: genetic markers for ecological studies of marine turtles. Molecular Ecology 3:363-373.
- 114. OSENTOSKI, M.F. AND T. LAMB. 1995. Intraspecific phylogeography of the gopher tortoise, *Gopherus polyphemus*: RFLP analysis of the amplified mtDNA segments. Molecular Ecology 4:709-718.
- 115. OSENTOSKI, M.F., S.W. MOCKFORD, J.M. WRIGHT, M. SNYDER, T.B. HERMAN, AND C.R. HUGHES. 2002. Isolation and characterization of microsatellite loci from the Blanding's turtle, *Emydoidea blandingii*. Molecular Ecology Notes 2:147-149.
- 116. Pääbo, S. 1990. Amplifying ancient DNA. Pages 159-166 in PCR Protocols, a Guide to Methods and Applications (M.A. Innis, D.H. Gefland, J.J. Sninsky, and T.J. White, eds.). Academic, New York.
- 117. PAGE, R.D.M. AND E.C. HOLMES. 1998. Molecular Evolution: A Phylogenetic Approach. Blackwell Science, Oxford.
- 118. PALKOVACS, E.P., J. GERLACH, AND A. CACCONE. 2002. The evolutionary origin of Indian Ocean tortoises (*Dipsochelys*). Molecular Phylogenetics and Evolution 24:216-227.
- 119. PALKOVACS, E.P., M. MARSCHNER, C. CIOFI, J. GERLACH, AND A. CACCONE. 2003. Are the native giant tortoises from the Seychelles really extinct? A genetic perspective based on mtDNA and microsatellite data. Molecular Ecology 12.
- 120. PALUMBI, S., A. MARTIN, S. ROMANO, W.O. MCMILLAN, L. STICE, AND G. GRABOWSKI. 1991. The simple fool's guide to PCR, version 2.0. University of Hawaii, Honolulu.
- 121. PALUMBI, S.R. 1996. Nucleic acids II: the polymerase chain reaction. Pages 205-247 in Molecular Systematics, 2nd ed. (D.M. Hillis, C. Moritz, and B.K. Mable, eds.). Sinauer, Sunderland, MA.
- 122. PAQUETTE, S.R., G.D. SHORE, S.M. BEHNCKE, F.J. LAPOINTE, E. EDWARD, AND E.E.J. LOUIS. 2005. Characterization of polymorphic microsatellite markers for the endangered Malagasy radiated tortoise (*Geochelone radiata*). Molecular Ecology Notes 5:527-530.
- 123. PARHAM, J.F., C.R. FELDMAN, AND J.L. BOORE. 2006. The complete mitochondrial genome of the enigmatic bigheaded turtle (*Platysternon*): description of unusual genomic features and the reconciliation of phylogenetic hypotheses based on mitochondrial and nuclear DNA. BMC Evolutionary Biology 6.
- 124. PARHAM, J.F., J.R. MACEY, T.J. PAPENFUSS, C.R. FELDMAN, O. TÜRKOZAN, R. POLYMENI, AND J.L. BOORE. 2006. The phylogeny of Mediterranean tortoises and their close relatives based on complete mitochondrial genome sequences from museum specimens. Molecular Phylogenetics and Evolution 38:50-64.
- 125. PARHAM, J.F., W.B. SIMISON, K.H. KOZAK, C.R. FELDMAN, AND H. SHI. 2001. New Chinese turtles: endangered or invalid? A reassessment of two species using mitochondrial DNA, allozyme electrophoresis and known-locality specimens. Animal Conservation 4:357-367.
- 126. PARHAM, J.F., B.L. STUART, R. BOUR, AND U. FRITZ. 2004. Evolutionary distinctiveness of the extinct Yunnan box turtle (*Cuora yunnanensis*) revealed by DNA from an old museum specimen. Proceedings of Royal Society of London Biology (Suppl.) 271:S391-S394.
- 127. PEARSE, D.E., A.D. ARNDT, N. VALENZUELA, B.A. MILLER, V. CANTARELLI, AND J.W. SITES JR. 2006. Estimating population structure under nonequilibrium conditions in a conservation context: continent-wide population genetics of the giant Amazon river turtle, *Podocnemis expansa* (Chelonia; Podocnemididae). Molecular Ecology 15:985–1006.

- 128. PEARSE, D.E., R.B. DASTRUP, O. HERNANDEZ, AND J.W. SITES, JR. 2006. Paternity in an Orinoco population of endangered Arrau river turtles, *Podocnemis expansa* (Pleurodira; Podocnemididae), from Venezuela. Chelonian Conservation and Biology 5:232-238.
- 129. PEARSE, D.E., F.J. JANZEN, AND J.C. AVISE. 2001. Genetic markers substantiate long-term storage and utilization of sperm by female painted turtles. Heredity 86:378-384.
- 130. PEREZ, M., R. BOUR, J. LAMBOURDIERE, S. SAMADI, AND M.C. BOISSELIER. 2006. Isolation and characterization of eight microsatellite loci for the study of gene flow between *Testudo marginata* and *Testudo weissingeri* (Testudines: Testudinidae). Molecular Ecology Notes 6:1096-1098.
- 131. PRIMMER, C.R., T. BORGE, J. LINDELL, AND G.P. SÆTRE. 2002. Single nucleotide polymorphism characterization in species with limited available sequence information: high nucleotide diversity revealed in the avian genome. Molecular Ecology 11:603–612.
- 132. PRYCHITKO, T.M. AND W.S. MOORE. 1997. The utility of DNA sequences of an intron from the beta-fibrinogen gene in phylogenetic analysis of woodpeckers (Aves: Picidae). molecular phylogenetics and Evolution 8:193-204.
- 133. PRYCHITKO, T.M. AND W.S. MOORE. 2000. Comparative evolution of the mitochondrial cytochrome b gene and nuclear betafibrinogen intron 7 in woodpeckers. Molecular Biology and Evolution 7:1101-1111.
- 134. PRYCHITKO, T.M. AND W.S. MOORE. 2003. Alignment and phylogenetic analyses of b-fibrinogen intron 7 sequences among avian orders reveal conserved regions within the intron. Molecular Biology and Evolution 20:762–771.
- 135. Pu, Y.-G., Q.-L. PENG, Z.-F. WANG, AND L.-W. NIE. 2005. Sequence and organization of the complete mitochondrial genome of the Chinese three-keeled pond turtle *Chinemys reevesi*. Acta Zoologica Sinica 51:691-696.
- 136. RAFELIARISOA, T., G. SHORE, S. ENGBERG, E. LOUIS, AND R. BRENNEMAN. 2006. Characterization of 11 microsatellite marker loci in the Malagasy big-headed turtle (*Erymnochelys* madagascariensis). Molecular Ecology Notes 6:1228-1230.
- 137. ROBERTS, M.A., T.S. SCHWARTZ, AND S.A. KARL. 2004. Global Population genetic structure and male-mediated gene flow in the green sea turtle (*Chelonia mydas*): analysis of microsatellite loci. Genetics 166:1857-1870.
- 138. ROMAN, J.H. AND B.W. BOWEN. 2000. The mock turtle syndrome: genetic identification of turtle meat purchased in southeastern United States of America. Animal Conservation 3:61-65.
- 139. ROMAN, J.H., S.D. SANTHUFF, P.E. MOLER, AND B.W. BOWEN. 1999. Population structure and cryptic evolutionary units in the alligator snapping turtle. Conservation Biology 13:135-142.
- 140. ROQUES, S., C. DIAZ-PANIAGUA, AND A.C. ANDREU. 2004. Microsatellite markers reveal multiple paternity and sperm storage in the Mediterranean spur thighed tortoise, *Testudo graeca*. Canadian Journal of Zoology 82:153-159.
- 141. ROQUES, S., C. DIAZ-PANIAGUA, A. PORTHEAULT, N. PEREZ-SANTIGOSA, AND J. HIDALGO-VILA. 2006. Sperm storage and low incidence of multiple paternity in the European pond turtle, *Emys* orbicularis: a secure but costly strategy? Biological Conservation 129:236-243.
- 142. ROY, M.S., E. GEFFEN, D. SMITH, E. OSTRANDER, AND R.K. WAYNE. 1994. Patterns of differentiation and hybridization in North American wolf-like canids revealed by analysis of microsatellite loci. Molecular Biology and Evolution 11:553-570.
- 143. Roy, M.S., E. GEFFEN, D. SMITH, AND R.K. WAYNE. 1996. Molecular genetics of pre-1940 red wolves. Conservation Biology 10,:1413-1424.
- 144. SCHILDE, M., D. BARTH, AND U. FRITZ. 2004. An Ocadia sinensis

x *Cyclemys shanensis* hybrid (Testudines: Geoemydidae). Asiatic Herpetological Research 10:120-125.

- 145. SCHWARTZ, T.S. AND S.A. KARL. 2005. Population and conservation genetics of the gopher tortoise (*Gopherus polyphemus*). Conservation Genetics 6:917-928.
- 146. SCHWARTZ, T.S., M.F. OSENTOSKI, T. LAMB, AND S.A. KARL. 2003. Microsatellite loci for the North American tortoises (genus *Gopherus*) and their applicability to other turtle species. Molecular Ecology Notes 3:283-286.
- 147. SEDDON, J.M., A. GEORGES, P.R. BAVERSTOCK, AND W.P. MCCORD. 1997. Phylogenetic relationships of chelid turtles (Pleurodira: Chelidae) based on mitochondrial 12S rRNA gene sequence variation. Molecular Phylogenetics and Evolution 7:55-61.
- 148. SERB, J.M., C.A. PHILLIPS, AND J.B. IVERSON. 2001. Molecular phylogeny and biogeography of *Kinosternon flavescens* based on complete mitochondrial control region sequences. Molecular Phylogenetics and Evolution 18:149-162.
- 149. SEUTIN, G., B.F. LANG, D.P. MINDELL, AND R. MORAIS. 1994. Evolution of the WANCY region in amniote mitochondrial DNA. Molecular Biology and Evolution 11:329-340.
- SHAFFER, H.B., P.A. MEYLAN, AND M.L. MCKNIGHT. 1997. Tests of turtle phylogeny: molecular, morphological, and paleontological approaches. Systematic Biology 46:235-268.
- 151. SITES, J.W., N.N. FITZSIMMONS, N.J. DA SILVA, AND V.H. CANTARELLI. 1999. Conservation genetics of the giant Amazon river turtle (*Podocnemis expansa*; Pelomedusidae) - inferences from two classes of molecular markers. Chelonian Conservation and Biology 3:454-463.
- 152. SPINKS, P.Q. AND H.B. SHAFFER. 2005. Range-wide molecular analysis of the western pond turtle (*Emys marmorata*): cryptic variation, isolation by distance, and their conservation implications. Molecular Ecology 14:2047-2064.
- 153. SPINKS, P.Q. AND H.B. SHAFFER. 2007. Conservation phylogenetics of the Asian box turtles (Geoemydidae, Cuora): mitochondrial introgression, numts, and inferences from multiple nuclear loci. Conservation Genetics 8:641-657.
- 154. SPINKS, P.Q., H.B. SHAFFER, J.B. IVERSON, AND W.P. MCCORD. 2004. Phylogenetic hypotheses for the turtle family Geoemydidae. Molecular Phylogenetics and Evolution 32:164-182.
- 155. STARKEY, D.E., H.B. SHAFFER, R.L. BURKE, M.R.J. FORSTNER, J.B. IVERSON, F.J. JANZEN, A.G.J. RHODIN, AND G.R. ULTSCH. 2003. Molecular systematics, phylogeography, and the effects of Pleistocene glaciation in the painted turtle (*Chrysemys picta*) complex. Evolution 57:119-128.
- 156. STEWART, D.T. AND A.J. BAKER. 1994. Evolution of mtDNA Dloop sequences and their use in phylogenetic studies of shrews in the subgenus *Otrisorex* (Sorex: *Soricidae: Insectivora*). Molecular Phylogenetics and Evolution 3:38-46.
- 157. STUART, B.L. AND J.F. PARHAM. 2004. Molecular phylogeny of the critically endangered Indochinese box turtle (*Cuora galbinifrons*). Molecular Phylogenetics and Evolution 31:164-177.
- STUART, B.L. AND J.F. PARHAM. 2007. Recent hybrid origin of three rare Chinese turtles. Conservation Genetics 8:169-175.
- 159. SUNNUCKS, P. 2000. Efficient genetic markers for population biology. Trends in Ecology and Evolution 15:199-203.
- 160. TESSIER, N., S.R. PAQUETTE, AND F.J. LAPOINTE. 2005. Conservation genetics of the wood turtle (*Glyptemys insculpta*) in Quebec, Canada. Canadian Journal of Zoology 83:765-772.
- VALENZUELA, N. 2000. Multiple paternity in side-neck turtles *Podocnemis expansa* evidence from microsatellite DNA data. Molecular Ecology 9:99-105.
- 162. VALENZUELA, N., A. LECLERE, AND T. SHIKANO. 2006. Comparative gene expression of steroidogenic factor 1 in *Chrysemys picta*

and *Apalone mutica* turtles with temperature-dependent and genotypic sex determination. Evolution and Development 8:424-432.

- 163. VAN DER KUYL, A.C., D.L.P. BALLASINA, J.T. DEKKER, J. MAAS, R.E. WILLEMSEN, AND J. GOUDSMIT. 2002. Phylogenetic relationships among the species of the genus *Testudo* (Testudines: Testudinidae) inferred from mitochondrial 12S rRNA gene sequences. Molecular Phylogenetics and Evolution 22:174-183.
- 164. VAN DER KUYL, A.C., D.L.P. BALLASINA, AND F. ZORGDRAGER. 2005. Mitochondrial haplotype diversity in the tortoise species *Testudo graeca* from North Africa and the Middle East. BMC Evolutionary Biology 5.
- 165. WALKER, D., V.J. BURKE, I. BARÁK, AND J.C. AVISE. 1995. A comparison of mtDNA restriction sites vs. control region sequences in phylogeographic assessment of the musk turtle (*Sternotherus minor*). Molecular Ecology 4:365-373.
- 166. WALKER, D., P.E. MOLER, K.A. BUHLMANN, AND J.C. AVISE. 1998. Phylogeographic uniformity in mitochondrial DNA of the snapping turtle (*Chelydra serpentina*). Animal Conservation 1:55-60.
- 167. WALKER, D., G. ORTÍ, AND J.C. AVISE. 1998. Phylogenetic distinctiveness of a threatened aquatic turtle (*Sternotherus depressus*). Conservation Biology 12:639-645.
- WEISROCK, D.W. AND F.J. JANZEN. 2000. Comparative molecular phylogeography of North American softshell turtles (*Apalone*):

implications for regional and wide-scale historical evolutionary forces. Molecular Phylogenetics and Evolution 14:152-164.

- 169. WILLIAMS, C.L., R.C. BRUST, T.T. FENDLEY, G.R. TILLER JR., AND O.E. RHODES JR. 2005. A comparison of hybridization between Mottled Ducks (*Anas fulvigula*) and Mallards (*A. platyrhynchos*) in Florida and South Carolina using microsatellite DNA analysis. Conservation Genetics 6:445-453.
- 170. WINK, M. 1995. Phylogeny of Old and New World vultures (Aves: Accipitridae and Cathartidae) inferred from nucleotide sequences of the mitochondrial cytochrome b gene. Zeitschrift für Naturforschung 50c:868-882.
- 171. WINK, M., D. GUICKING, AND U. FRITZ. 2001. Molecular evidence for hybrid origin of *Mauremys iversoni* Pritchard et McCord, 1991, and *Mauremys pritchardi* McCord, 1997. Zoologische Abhandlungen, Staatliches Museum für Tierkunde Dresden 51:41-49.
- 172. WU, P., K.-Y. ZHOU, AND Q. YANG. 1999. Phylogeny of Asian freshwater and terrestrial turtles based on sequence analysis of 12S rRNA gene fragment. Acta Zoologica Sinica 45:260-267.
- 173. ZANE, L., L. BARGELLONI, AND T. PATARNELLO. 2002. Strategies for microsatellite isolation: a review. Molecular Ecology 11:1-16.
- 174. ZARDOYA, R. AND A. MEYER. 1998. Cloning and characterization of a microsatellite in the mitochondrial control region of the African sidenecked turtle, *Pelomedusa subrufa*. Gene 216:149-153.