Homework \#1

1. 5 nanoliters $=5 \times 10^{-9} \mathrm{~L}$

70 microliters $=7.0 \times 10^{-5} \mathrm{~L}$
88 milliliters $=8.8 \times 10^{-2} \mathrm{~L}$
10 deciliters $=1.0 \times 10^{0} \mathrm{~L}$
7 kiloliters $=7 \times 10^{3} \mathrm{~L}$
2. $6 \mathrm{mg}=6.0 \times 10^{-3} \mathrm{~g}$
$21 \mathrm{mg}=2.1 \times 10^{-2} \mathrm{~g}$
$303 \mathrm{ng}=3.03 \times 10^{-7} \mathrm{~g}$
$10 \mathrm{~kg}=1.0 \times 10^{4} \mathrm{~g}$
3.
a $\frac{1 \mathrm{mble}}{K}$ of Tris $\times \frac{121.4 \mathrm{~g} \mathrm{x}}{\text { mołe }} 0.5 \ell=60.7 \mathrm{~g}$ of Tris
Dissolve 60.7 g of Tris in about 300 ml of $\mathrm{H}_{2} \mathrm{O}$. Once dissolved adjust the pH to 8.0 , and then make up to 500 ml mark with $\mathrm{H}_{2} \mathrm{O}$ in a graduated cylinder.

Dissolve 292.2 g of NaCl in about 0.7 L of $\mathrm{H}_{2} \mathrm{O}$. Once dissolved, dilute to 1 L with $\mathrm{H}_{2} \mathrm{O}$ in a graduated cylinder.
c $\quad \frac{100 \mathrm{mg}}{\mathrm{ml}}$ of ampicillin $\mathrm{x} 10 \mathrm{ntl}=1 \mathrm{~g}$ of ampicillin
Dissolve 1 g of ampicillin in about 5 ml of $\mathrm{H}_{2} \mathrm{O}$. Once dissolved, dilute to 10 ml with $\mathrm{H}_{2} \mathrm{O}$ in a graduated cylinder.
d $\frac{1 \text { mole }}{\not \subset}$ of $\mathrm{MgCl}_{2} \times \underset{\text { mole }}{203.3 \mathrm{~g}} \times 0.5 \nmid=101.65 \mathrm{~g}$ of MgCl_{2}
Dissolve 101.65 g of MgCl_{2} in about 250 ml of $\mathrm{H}_{2} \mathrm{O}$. Once dissolved, dilute to 500 ml with $\mathrm{H}_{2} \mathrm{O}$ in a graduated cylinder.
4. For dilutions, use the formula $\mathrm{C}_{1} \mathrm{~V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2}$. This solution has 2 components:

Tris-dilute 1 M to 10 mM

$$
\mathrm{C}_{1} \mathrm{~V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2}
$$

$$
\begin{aligned}
1000 \mathrm{mM} \times \mathrm{V}_{1} & =10 \mathrm{mM} \times 100 \mathrm{ml} \\
\mathrm{~V}_{1} & =\frac{10 \mathrm{~m} \mathrm{M} \times 100 \mathrm{ml}}{1000 \mathrm{n} 1 \mathrm{M}} \\
& =1 \mathrm{ml} \text { of } 1 \mathrm{M} \text { Tris }
\end{aligned}
$$

EDTA-dilute 0.5 M to $1 \mathrm{mM} \quad \mathrm{C}_{1} \mathrm{~V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2}$

$$
\begin{aligned}
500 \mathrm{mM} \times \mathrm{V}_{1} & =1 \mathrm{mM} \times 100 \mathrm{ml} \\
\mathrm{~V}_{1} & =\frac{1 \mathrm{mAM} \times 100 \mathrm{ml}}{500 \mathrm{rM}} \\
& =0.2 \mathrm{ml} \text { or } 200 \mu \mathrm{~L} \text { of } 0.5 \mathrm{M} \text { EDTA }
\end{aligned}
$$

Using a 100 ml graduated cylinder, add 1 ml of 1 M Tris and $200 \mu \mathrm{~L}$ of 0.5 M EDTA. Add water to dilute to a final volume of 100 ml .

