

Hemoglobin mutants

There are about 500 variants of hemoglobin 95% are single amino acid substitutions.

5% of the world's population carries a different sequence from the normal.

- •Changes in surface charge
- •Changes in internally located residues
- $\bullet Changes \ stabilizing \ Methemoglobin \ (oxidized \ Fe(III))$
- •Changes in the α 1- β 2 contact

Changes in surface rarely change the function of hemoglobin with the exception of the sickle cell mutation.

Internal residues cause the hemoglobin to contort to different shapes and alter its binding properties. Heinz bodies are precipitated aggregates of hemoglobin. Usually cause hemolytic anemia characteristic by cell lysis.

Name"	Mutation	Effect
Hammersmith	Phe CD1(42) $\beta \rightarrow Ser$	Weakens heme binding
Bristol	Val E11(67) $\beta \rightarrow Asp$	Weakens heme binding
Bibba	Leu H19(136) $\alpha \rightarrow$ Pro	Disrupts the H helix
Savannah	Gly $B6(24)\beta \rightarrow Val$	Disrupts the B-E helix interface
Philly	Tyr C1(35) $\alpha \rightarrow$ Phe	Disrupts hydrogen bonding at the $\alpha_1 - \beta_1$ interface
Boston	His E7(58) $\alpha \rightarrow$ Tyr	Promotes methemoglobin formation
Milwaukee	Val E11(67) $\beta \rightarrow Glu$	Promotes methemoglobin formation
Iwate	His F8(87) $\alpha \rightarrow$ Tyr	Promotes methemoglobin formation
Yakima	Asp G1(99) $\beta \rightarrow$ His	Disrupts a hydrogen bond that stabilizes the T conformation
Kansas	Asn G4(102) $\beta \rightarrow$ Thr	Distrupts a hydrogen bond that stabilizes the R conformation

Table 7-1 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

General Properties of Enzymes Increased reaction rates sometimes 10⁶ to 10¹² increase

Enzymes do not change ΔG between the reactants and products.

They increase reaction rates (catalysts).

•Milder reaction conditions

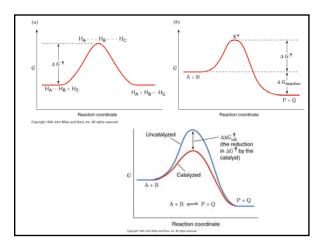
•Great reaction specificity

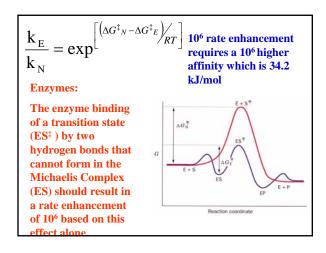
•Can be regulated

Preferential transition state binding

Binding to the transition state with greater affinity to either the product or reactants.

RACK MECHANISM

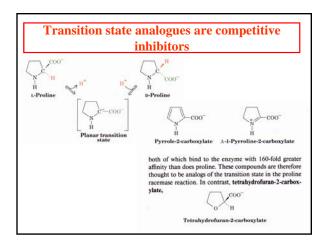

Strain promotes faster rates

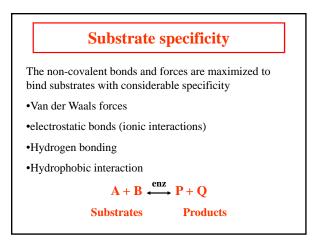

The strained reaction more closely resembles the transition state and interactions that preferentially bind to the transition state will have faster rates

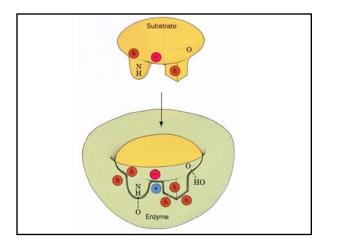
$S \xrightarrow{k_N} P$	\mathbf{k}_{N} for uncatalyzed reaction
	and
$ES \xrightarrow{\kappa_E} EP$	$\mathbf{k}_{\mathbf{E}}$ for catalyzed reaction

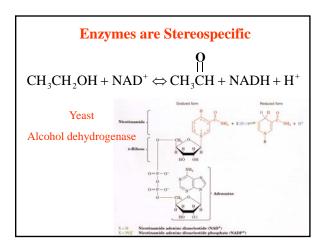
$$E + S \xleftarrow{K_N^{\ddagger}} S^{\ddagger} + E \rightarrow P + E$$

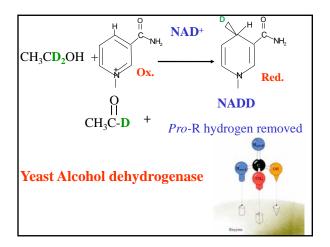
$$\begin{array}{c} \updownarrow K_R \qquad \textcircled{} K_T \qquad \textcircled{} \\ ES \xleftarrow{K_E^{\ddagger}} ES^{\ddagger} \rightarrow EP \\ K_R = \frac{[ES]}{[E][S]} \quad K_T = \frac{[ES]}{[E][S]} \stackrel{\ddagger}{} \quad K_N^{\ddagger} = \frac{[E][S]}{[E][S]} \stackrel{\ddagger}{} \\ K_E^{\ddagger} = \frac{[ES^{\ddagger}]}{[ES]} \quad \frac{K_T}{K_R} = \frac{[S][ES^{\ddagger}]}{[S^{\ddagger}][ES]} = \frac{K_E^{\ddagger}}{K_N^{\ddagger}}$$

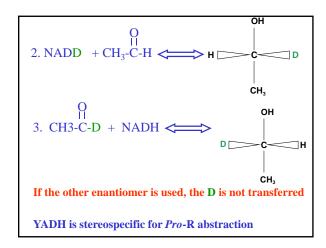


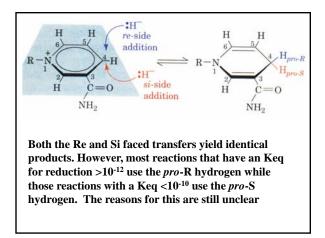



Enzymes: Preferential transition state binding

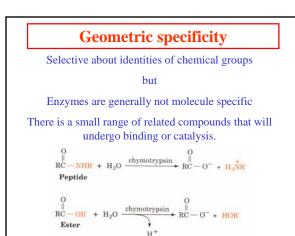

The more tightly an enzyme binds its reaction's transition state $(K_{\rm T})$ relative to the substrate $(K_{\rm R})$, the greater the rate of the catalyzed reaction $(k_{\rm E})$ relative to the uncatalyzed reaction $(k_{\rm N})$

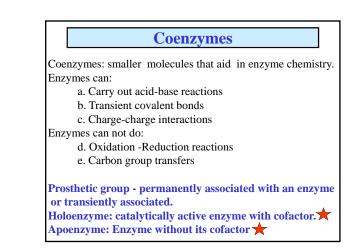

Catalysis results from the preferred binding and therefore the stabilization of the transition state (S[‡]) relative to that of the substrate (S).











1 in 7 billion turnovers. Mutating Leu 182 to Ala increases the mistake rate to 1 in 850,000. This is a 8000 fold increase in the mistake rate, This suggests that the stereospecificity is helped by amino acid side chains.

Common Coenzymes			
Coenzyme	Reaction mediated		
Biotin	Carboxylation		
Cobalamin (B12)	Alkylation transfers		
Coenzyme A	Acyl transfers		
Flavin	Oxidation-Reduction		
Lipoic acid	Acyl transfers		
Nicotinamide	Oxidation-Reduction		
Pyridoxal Phosphate	Amino group transfers		
Tetrahydrofolate	One-carbon group transfers		
Thiamine pyrophosphate	Aldehyde transfer		

Vitamins are Coenzyme precursors				
Vitamin	Coenzyme	Deficiency Disease		
Biotin	Biocytin	not observed		
Cobalamin (B ₁₂)	Cobalamin	Pernicious anemia		
Folic acid	tetrahydrofolate	Neural tube defects Megaloblastic anemia		
Nicotinamide	Nicotinamide	Pellagra		
Pantothenate	Coenzyme A	Not observed		
Pyridoxine (B ₆)	Pyridoxal phosphate	Not observed		
Riboflavin (B2)	Flavin	Not observed		
Thiamine (B ₁) Thiamine pyrophosphate Beriberi		hate Beriberi		

Lecture 14 Thursday 10/08/09 Enzymes II