

Enzyme kinetics are important

1. Substrate binding constants can be measured as well as inhibitor strengths and maximum catalytic rates.

2. Kinetics alone will not give a chemical mechanism but combined with chemical and structural data mechanisms can be elucidated.

3. Kinetics help understand the enzymes role in metabolic pathways.

4. Under "proper" conditions rates are proportional to enzyme concentrations and these can be determine " metabolic problems".

 $2A \rightarrow P$

Instantaneous rate: the rate of reaction at any specified
time point that is the definition of the derivative.
We can predict the shape of the curve if we know the
order of the reaction.
A second order reaction:
$$2A \rightarrow P$$

 $v = -\frac{d[A]}{dt} = k[A]^2$
Or for $A + B \rightarrow P + Q$
 $v = -\frac{d[A]}{dt} = -\frac{d[B]}{dt} = k[A][B]$

Г

When the substrate concentration becomes large
enough to force the equilibrium to form completely
all ES the second step in the reaction becomes rate
limiting because no more ES can be made and the
enzyme-substrate complex is at its maximum value.
$$v = \frac{d[P]}{dt} = k_2[ES] \qquad [ES] \text{ is the difference between therates of ES formation minus therates of its disappearance.
$$\frac{d[ES]}{dt} = k_1[E][S] - k_{-1}[ES] - k_2[ES]$$$$

$$\begin{bmatrix} \mathbf{E} \end{bmatrix}_{\mathbf{T}} = \begin{bmatrix} \mathbf{E} \end{bmatrix} + \begin{bmatrix} \mathbf{ES} \end{bmatrix}$$
Combining 1 + 2 + 3
$$\mathbf{k}_{1}(\begin{bmatrix} \mathbf{E} \end{bmatrix}_{\mathbf{T}} - \begin{bmatrix} \mathbf{ES} \end{bmatrix}) \begin{bmatrix} \mathbf{S} \end{bmatrix} = (\mathbf{k}_{-1} + \mathbf{k}_{2}) \begin{bmatrix} \mathbf{ES} \end{bmatrix}$$
rearranging
$$\begin{bmatrix} \mathbf{ES} \end{bmatrix} (\mathbf{k}_{-1} + \mathbf{k}_{2} + \mathbf{k}_{1} \begin{bmatrix} \mathbf{S} \end{bmatrix}) = \mathbf{k}_{1} \begin{bmatrix} \mathbf{E} \end{bmatrix}_{\mathbf{T}} \begin{bmatrix} \mathbf{S} \end{bmatrix}$$
Divide by \mathbf{k}_{1} and solve for $\begin{bmatrix} \mathbf{ES} \end{bmatrix}$

$$\begin{bmatrix} \mathbf{ES} \end{bmatrix} = \frac{\mathbf{k}_{-1} + \mathbf{k}_{2}}{\mathbf{k}_{M} + \begin{bmatrix} \mathbf{S} \end{bmatrix}}$$

$$K_{M} = \frac{\mathbf{k}_{-1} + \mathbf{k}_{2}}{\mathbf{k}_{1}}$$

$$v_{o} = \left(\frac{d[\mathbf{P}]}{dt}\right)_{t=0} = k_{2}[\mathbf{ES}] = \frac{k_{2}[\mathbf{E}]_{\mathrm{T}}[\mathbf{S}]}{\mathbf{K}_{M} + [\mathbf{S}]}$$

$$v_{o} \text{ is the initial velocity when the reaction is just starting out.}$$
And $V_{\max} = k_{2}[\mathbf{E}]_{\mathrm{T}}$ is the maximum velocity
$$v_{o} = \frac{V_{\max}[\mathbf{S}]}{\mathbf{K}_{M} + [\mathbf{S}]}$$
The Michaelis - Menten equation

Enzyme	Substrate	$K_M(M)$	k _{ot} (s ⁻¹)	$k_{out}/K_M (M^{-1} \text{ s}^{-1})$
Acetylcholinesterase	Acetylcholine	9.5×10 ⁻⁵	1.4×10^{4}	1.5×10^{4}
Carbonic anhydrasc	CO ₂ HCO ₁	1.2×10^{-2} 2.6×10^{-2}	1.0×10^{4} 4.0×10^{5}	8.3 × 10 ⁹ 1.5 × 10 ⁹
Catalasc	H ₂ O ₂	2.5×10^{-2}	1.0×10^{3}	4.0×10^{8}
Chymotrypsin	N-Acetylglycine ethyl ester N-Acetylvaline ethyl ester N-Acetyltyrosine ethyl ester	4.4×10^{-1} 8.8×10^{-2} 6.6×10^{-4}	5.1×10^{-2} 1.7×10^{-1} 1.9×10^{2}	1.2 × 10 ⁻¹ 1.9 2.9 × 10 ⁵
Fumarase	Fumarate	5.0×10-4	8.0×10^{2}	1.6×10^8
	PERMAN	2.3 × 10 -	9.0×10^{4}	3.6×10^{7}
Urease	Urea	2.5 × 10 ⁻²	9.0 × 10 ⁴ 1.0 × 10 ⁴	3.6 × 10' 4.0 × 10 ⁵
There a	re a wide range seen i	of K_M , V_1	<u>90 × 10*</u> 1.0 × 10* max, and	4.0×10 ⁵
There a	re a wide range seen i	of K _M , Vi	max, and	^{3,6 × 10⁶} 4.0 × 10 ⁶

For Michaelis -Menton kinetics $k_2 = k_{cat}$

and

When $[S] \ll K_M$ very little ES is formed and $[E] = [E]_T$

$$v_o \approx \frac{k_2}{K_M} [E]_T [S] \approx \frac{k_{cat}}{K_M} [E] [S]$$

 K_{cat}/K_M is a measure of catalytic efficiency

