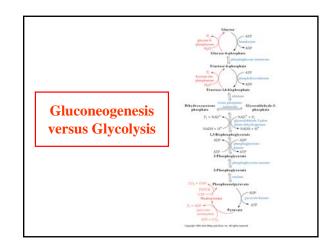
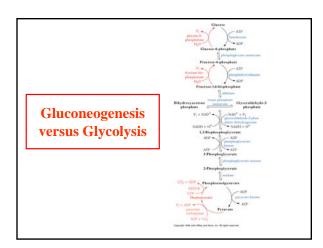
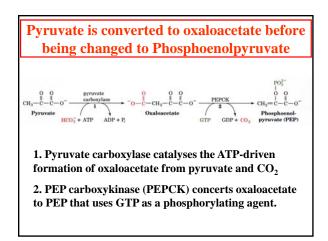
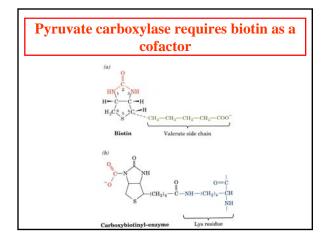


Free energy changes in glycolysis					
eaction	enzyme	ΔG°	ΔG°		
1	Hexokinase	-20.9	-27.2		
2	PGI	+2.2	-1.4		
3	PFK	-17.2	-25.9		
4	Aldolase	+22.8	-5.9		
5	TIM	+7.9	+4.4		
6+7	GAPDH+PGK	-16.7	-1.1		
8	PGM	+4.7	-0.6		
9	Enolase	-3.2	-2.4		
10	РК	-23.3	-13.9		

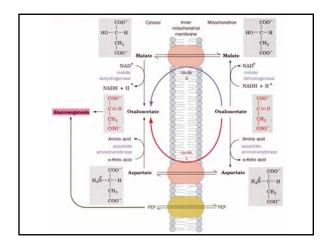

Gluconeogenesis is not just the reverse of glycolysis

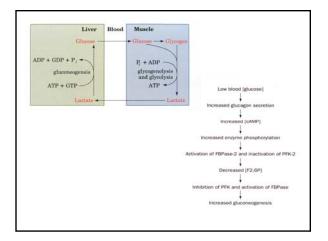

Several steps are different so that control of one pathway does not inactivate the other. However many steps are the same. Three steps are different from glycolysis.

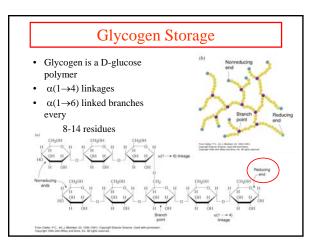

1 Pyruvate to PEP

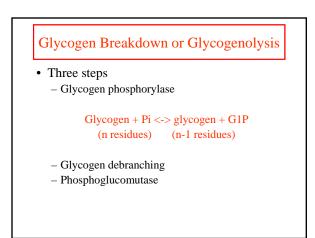

2 Fructose 1,6- bisphosphate to Fructose-6phosphate

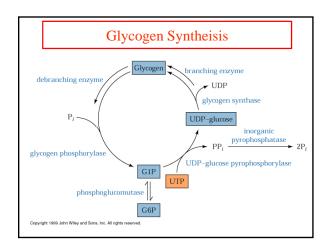
3 Glucose-6-Phosphate to Glucose

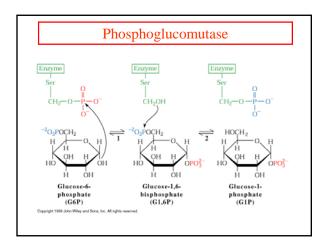


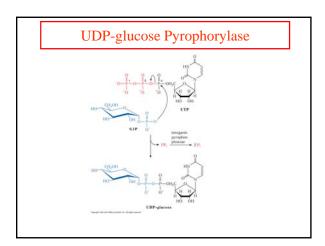


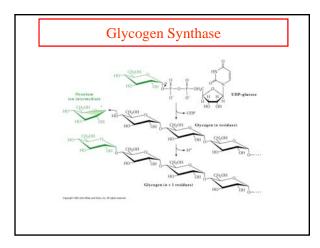

Acetyl-CoA regulates pyruvate carboxylase

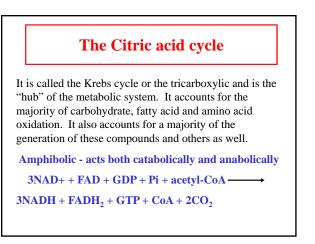

Increases in oxaloacetate concentrations increase the activity of the Krebs cycle and acetyl-CoA is a allosteric activator of the carboxylase. However when ATP and NADH concentrations are high and the Krebs cycle is inhibited, oxaloacetate goes to glucose.

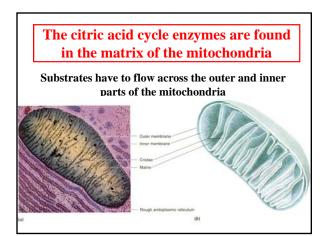


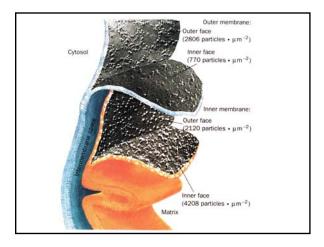

Enzyme	Allosteric Inhibitors	Allosteric Activators	Enzyme Phosphorylation	Protein Synthesis
PFK	ATP, citrate	AMP, F2-6P		
FBPase	AMP, F2-6P			
РК	Alanine	F1-6P	Inactivates	
Pyr. Carb		AcetylCoA	1	
PEPCK				Glucogon
PFK-2	Citrate	AMP, F6P, Pi	Inactivates	
FBPase-2	F6P	Glycerol-3-P	Activates	

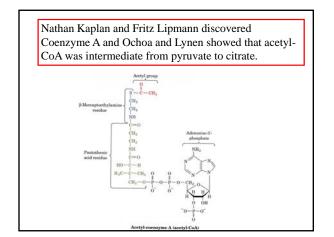


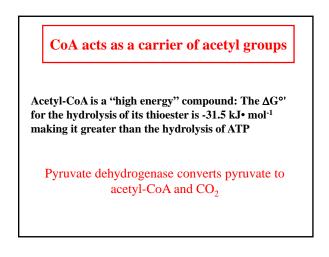


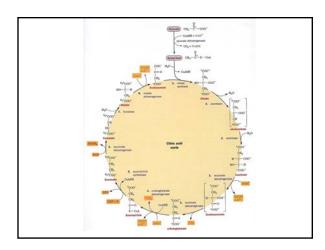


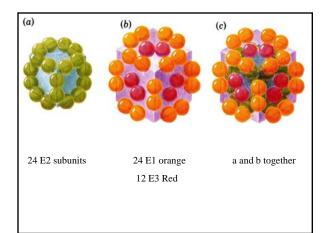


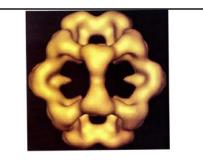










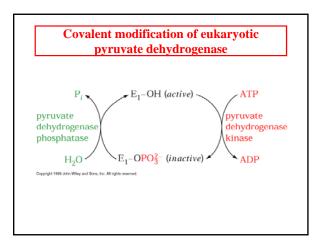

Pyruvate dehydrogenase

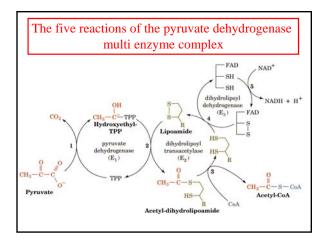
A multienzyme complexes are groups of non covalently associated enzymes that catalyze two or more sequential steps in a metabolic pathway.

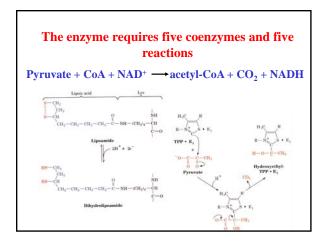
Molecular weight of 4,600,000 Da

	E. coli	yeast	
Pyruvate dehydrogenase E1	24	60	
dihydrolipoyl transacetylaseE2	24	60	
dihydrolipoyl dehydrogenaseE3	12	12	

EM based image of the core E2 from yeast pyruvate dh


60 subunits associated as 20 cone-shaped trimers that are verticies of a dodecahedron


Why such a complex set of enzymes?

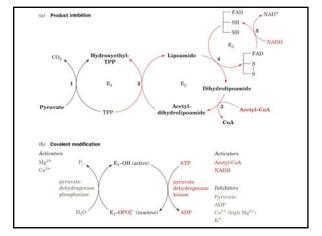

1 Enzymatic reactions rates are limited by diffusion, with shorter distance between subunits a enzyme can almost direct the substrate from one subunit (catalytic site) to another.

2. Channeling metabolic intermediates between successive enzymes minimizes side reactions

3. The reactions of a multienzyme complex can be coordinately controlled

The Coenzymes and prosthetic groups of pyruvate dehydrogenase					
Cofactor	Location	Function			
Thiamine pyrophosphate	Bound to E1	Decarboxylates pyruvate			
Lipoic acid	Covalently linked to a Lys on E2 (lipoamide)	Accepts hydroxyethyl carbanion from TPP			
CoenzymeA	Substrate for E2	Accepts acetyl group from lipoamide			
FAD (flavin)	Bound to E3	reduced by lipoamide			
NAD^+	Substrate for E3	reduced by FADH2			

Pyruvate dehydrogenase


1. Pyruvate dh decarboxylates pyruvate using a TPP cofactor forming hydroxyethyl-TPP.

2 The hydroxyethyl group is transferred to the oxidized lipoamide on E2 to form Acetyl dihydrolipoamide-E2

3 E2 catalyzes the transfer of the acetyl groups to CoA yielding acetyl-CoA and reduced dihydrolipoamide-E2

4 Dihydrolipoyl dh E3 reoxidizes dihydrolipoamide-E2 and itself becomes reduced as FADH2 is formed

5 Reduced E3 is reoxidized by NAD⁺ to form FAD and NADH The enzymes SH groups are reoxidized by the FAD and the electrons are transferred to NADH

Next Lecture Tuesday 11/17/09 Citric Acid Cycle