

Henderson - Hasselbalch equation
From

$$
K=\frac{\left[H^{+}\right]\left[A^{-}\right]}{[H A]}
$$

Rearrange

$$
\left[H^{+}\right]=K \frac{[H A]}{\left[A^{-}\right]}
$$

Take (-)Log of each

$$
p H=-\log K+\log \frac{\left[A^{-}\right]}{[H A]}
$$

$$
p H=p K+\log \frac{\left[A^{-}\right]}{[H A]}
$$

The $\underline{6}$ step approach

1. Write the Henderson + Hasselbalch equation.
2. Write the acid base equation
3. Make sure either an H^{+}or OH^{-}is in the equation.
4. Find out what you are solving for
5. Write down all given values.
6. Set up equilibrium conditions.
7. Plug in $\mathrm{H}+\mathrm{H}$ equation and solve.
What is the pH of a solution of that contains 0.1 M
1) $\mathrm{pH}=\mathrm{pK}+\underset{\text { LHA }}{\operatorname{LH}\left[\mathrm{A}^{-}\right]}$
2) $\mathrm{CH}_{3} \mathrm{COOH} \longleftrightarrow \mathrm{COO}^{-}$and $0.9 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$?
3) Find pH
4) $\mathrm{pK}=4.76 \quad \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}$
5) Already at equilibrium M
6) $\mathrm{X}=4.76+\log \frac{0.1}{0.9} \quad \mathrm{HA}=0.9 \mathrm{M}$
Log $0.111=-.95 \quad \mathrm{X}=4.76+(-.95)$

Group transfer reactions

$$
Y: \rightarrow A \rightarrow Y \longrightarrow A+X:
$$

Acetyl group transfer
Nucleophile attack on an acyl carbonyl to form a tetrahedral intermediate
Peptide bond hydrolysis
Phosphoryl group transfer
nucleophile attack on a phosphate to yield a trigonal bipyramid intermediate
Kinase reactions involving transfer of phosphate from ATP to organic alcohols
Glycosyl group transfers
substitution of one group at the C 1 carbon of a sugar for another

Electron transfer reactions to oxygen undergo transfer of one electron at a time (Pauli exclusion principle)
Oxidations to oxygen from NADH require two electron steps to be changed to one electron steps. Stable radical structures like FMN or FAD and cvtochromes are involved.

$\left.\begin{array}{c}\text { Nernst Equation- electromotive force -EMF- reduction potential } \\ \text { Work is non -pressure volume work or } \\ \Delta \mathrm{G}=-\mathrm{w}^{\prime}=- \text {-welec }^{\text {elec }} \\ \text { Welec }=\mathrm{nF} \Delta \mathrm{E} \\ \text { or } \\ \Delta \mathrm{G}=-\mathrm{nF} \Delta \mathrm{E} \\ \Delta \mathrm{E}=\Delta \mathrm{E}^{\mathrm{o}}-\frac{\mathrm{RT}}{\mathrm{nF}} \ln \left(\left[\begin{array}{c}{\left[\mathrm{A}_{\text {red }}\right]} \\ {\left[\mathrm{A}_{\mathrm{ox}}^{\mathrm{n}+}\right.}\end{array}\right]\left[\mathrm{B}_{\mathrm{ox}}^{\mathrm{n+}}\right]\right. \\ {\left[\mathrm{B}_{\text {red }}\right]}\end{array}\right)$.

Measuring potentials

$$
\mathrm{A}_{\mathrm{ox}}^{\mathrm{n+}+}+\mathrm{ne}^{-} \leftrightarrow \mathrm{A}_{\text {red }} \quad \text { and } \quad \mathrm{B}_{\mathrm{ox}}^{\mathrm{n+}}+\mathrm{ne}^{-} \leftrightarrow \mathrm{B}_{\text {red }}
$$

$$
\left.\mathrm{E}_{\mathrm{A}}=\mathrm{E}_{\mathrm{A}}^{0}-\frac{\mathrm{RT}}{\mathrm{nF}} \operatorname{Ln} \frac{\left[\mathrm{~A}_{\mathrm{red}}\right]}{\mathrm{A}_{\mathrm{ox}}^{\mathrm{n}+}}\right]
$$

$$
\Delta \mathrm{E}^{0}=\mathrm{E}_{(\text {e- acceptor })}^{0}-\mathrm{E}_{(\text {e-donor })}^{0}
$$

The positive cooperativity of O_{2} binding to Hb The effect of the ligand-binding state of one heme on the ligand-binding affinity of another.

The Fe iron is about $0.6 \AA$ out of the heme plane in the deoxy state. When oxygen binds it pulls the iron back into the heme plane. Since the proximal His F8 is attached to the Fe this pulls the complete F helix like a lever on a fulcrum.

General Properties of Enzymes

-Increased reaction rates sometimes $10{ }^{6}$ to $\mathbf{1 0}^{12}$ increase
Enzymes do not change $\Delta \mathrm{G}$ between the reactants and products.
They increase reaction rates (catalysts).
-Milder reaction conditions
-Great reaction specificity
-Can be regulated

Enzyme Kinetics: The double reciprocal plot
$\frac{1}{v_{o}}=\left(\frac{\mathrm{K}_{\mathrm{M}}}{\mathrm{V}_{\max }}\right) \frac{1}{[\mathrm{~S}]}+\frac{1}{\mathrm{~V}_{\max }}$

Uncompetitive Inhibition
$\mathrm{E}+\mathrm{S} \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftharpoons}} \mathrm{ES} \xrightarrow{k_{2}} \mathrm{P}+\mathrm{E}$
+
I
K_{I}^{\prime}
ESI \longrightarrow NO REACTION

