

- Where K_{w} is the ionization constant of water
- For pure water ionization constant is

$$
10^{-14} \mathrm{M}^{2} \text { at } 25^{\circ}
$$

- For pure water

$$
\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=\left(K_{w}\right)^{1 / 2}=10^{-7} \mathrm{M}
$$

\square

$$
K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

\square

- Neutral water has a tendency to ionize

$$
\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{H}^{+}+\mathrm{OH}^{-}
$$

- The free proton is associated with a water molecule to form the hydronium ion $\mathrm{H}_{3} \mathrm{O}^{+}$

Acids and bases

- For pure water (neutral)

$$
\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=\left(K_{w}\right)^{1 / 2}=10^{-7} \mathrm{M}
$$

- Acidic if $\left[\mathrm{H}^{+}\right]>10^{-7} \mathrm{M}$
- Basic if $\left[\mathrm{H}^{+}\right]<10^{-7} \mathbf{M}$

Acids and Bases

Lowery definition:

- Acid is a substance that can donate a proton.
- Base is a substance that can accept a proton.

Acid strength is specified by its dissociation constant
Molar concentration

$$
K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{\left.\left[\mathrm{HA}^{\prime}\right] \mathrm{H}_{2} \mathrm{O}\right]}
$$

for: $\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}$

| - reactants | products |
| :--- | :--- | :--- |
| HA
 A^{-} These ratios are
 | $\mathrm{H}_{3} \mathrm{O}^{+}$ |

a measure of relative proton affinities for each conjugate acid base pair.

$\mathrm{HA} \leftrightarrow \mathrm{H}^{+}+\mathrm{A}^{-}$

If you establish equilibrium, changes in $\left[\mathrm{H}^{+}\right]$will shift the ratio of HA and A :

By adding more H^{+}, A^{-}will be consumed forming HA.

If there is sufficient [A^{-}], the extra H^{+}will also be W consumed and the $\left[\mathrm{H}^{+}\right]$will not change.

Weak Acids

Weak acids do not completely dissociate:
They form an equilibrium:

$H A \leftrightarrow A^{-}+H^{+}$

If we ADD more H^{+}, the equilibrium shifts to form more HA using up A^{-}that is present.

Dissociation of $\mathrm{H}_{2} \mathrm{O}$
 $\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}^{+}+\mathrm{OH}^{-}$

Water also dissociates $\quad\left[\mathrm{H}_{2} \mathrm{O}\right]=55.5$

$$
K=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]}
$$

$$
K w=\left[H^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14} \mathrm{M}^{2}
$$

Ionization constant for water

Since there is equal amounts of $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$

$$
\left[H^{+}\right]=\left[\mathrm{OH}^{-}\right]=1 \mathrm{x} 10^{-7} \mathrm{M}
$$

This is neutral

At $[\mathrm{H}+]$ above this concentration the solution is ACIDIC

$$
\left[H^{+}\right]=1 \times 10^{-2}
$$

At $[\mathrm{H}+]$ below this concentration the solution is BASIC

$$
\left[H^{+}\right]=1 \times 10^{-9}
$$

$$
\begin{array}{ll}
{\left[\mathrm{H}^{+}\right]} & \mathrm{pH} \\
\hline 10^{-7} & =7 \\
10^{-3} & =3 \\
10^{-2} & =2 \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
10^{-10} & =10 \\
5 \times 10^{-4} & =3.3 \\
7 \times 10^{-6} & =5.15 \\
3.3 \times 10^{-8} & =7.48
\end{array}
$$

Relationship between pH and $\left[\mathrm{H}^{+}\right] /\left[\mathrm{OH}^{-}\right]$concentration

Henderson - Hasselbalch equation

From

$$
K=\frac{\left[H^{+}\right]\left[A^{-}\right]}{[H A]}
$$

Rearrange

$$
\left[H^{+}\right]=K \frac{[H A]}{\left[A^{-}\right]}
$$

Take (-)Log of each

$$
p H=-\log K+\log \frac{\left[A^{-}\right]}{[H A]}
$$

$$
p H=p K+\log \frac{\left[A^{-}\right]}{[H A]}
$$

Buffers

$$
\begin{gathered}
\mathrm{pH}=\mathrm{pK}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\
\frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \text { ratio varies from } \frac{1}{10} \Rightarrow \frac{10}{1}
\end{gathered}
$$

Above and below this range there is insufficient amount of conjugate acid or base to combine with the base or acid to prevent the change in pH .

For weak acids

$$
\mathrm{HA} \rightleftarrows \mathrm{~A}^{-}+\mathrm{H}^{+}
$$

This equilibrium depends on concentrations of each component.

$$
\text { If }[\mathrm{HA}]=\left[\mathrm{A}^{-}\right] \text {or } 1 / 2 \text { dissociated }
$$

Then $\quad \log \frac{[\boldsymbol{A}]}{[\boldsymbol{H A}]}=\log 1=\mathbf{0}: \mathrm{pH}=\mathrm{pK}$

By definition the pK is the pH where $[\mathrm{HA}]=\left[\mathrm{A}^{-}\right]$

Buffers

A buffer can resist pH changes if the pH is at or near a its pK .
Buffer range: the pH range where maximum resistance to pH change occurs when adding acid or base. It is $= \pm 1 \mathrm{pH}$ from the weak acid pK

If pK is 4.8 the buffering range is 3.8 to 5.8

Why?

Table 2-3 pH Values of Some Common Substances

Substance	pH
1 M NaOH	14
Household ammonia	12
Seawater	8
Blood	7.4
Milk	7
Saliva	6.6
Tomato juice	4.4
Vinegar	3
Gastric juice	1.5
1 M HCl	0

onexinimiontion

The buffer effect can be seen in a titration curve.
To a weak acid salt, $\mathrm{CH}_{3} \mathrm{CO}^{-}$, add HC 1 while monitoring pH vs. the number of equivalents of acid added.
do the opposite with base.
Buffer capacity: the molar amount of acid which the buffer can handle without significant changes in pH .
i.e

1 liter of a .01 M buffer can not buffer 1 liter of a 1 M solution of HCl but
1 liter of a 1 M buffer can buffer 1 liter of a .01 M solution of HCl

Blood Buffering System

- Bicarbonate most significant buffer
- Formed from gaseous CO_{2}

$$
\begin{aligned}
& \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{H}_{2} \mathrm{CO}_{3} \\
& \mathrm{H}_{2} \mathrm{CO}_{3} \longleftrightarrow \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}
\end{aligned}
$$

- Normal value blood pH 7.4
- Deviations from normal pH value lead to acidosis

The $\underline{6}$ step approach

1. Write the Henderson + Hasselbalch equation.
2. Write the acid base equation
3. Make sure either an H^{+}or OH^{-}is in the equation.
4. Find out what you are solving for
5. Write down all given values.
6. Set up equilibrium conditions.
7. Plug in $\mathrm{H}+\mathrm{H}$ equation and solve.

Henderson - Hasselbalch type problems:

$$
\mathrm{pH}=\mathrm{pK}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

You may be asked the pH, pK, the ratio of acid or base or solve for the final concentrations of each.
The $\underline{6}$ step approach

1. Write the Henderson + Hasselbalch equation.
2. Write the acid base equation
3. Make sure either an H^{+}or OH^{-}is in the equation.
4. Find out what you are solving for
5. Write down all given values.
6. Set up equilibrium conditions.
7. Plug in $\mathrm{H}+\mathrm{H}$ equation and solve.
What is the pH of a solution of that contains 0.1 M

$$
\mathrm{CH}_{3} \mathrm{COO}^{-} \text {and } 0.9 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH} \text { ? }
$$

1) $\mathrm{pH}=\mathrm{pK}+\underset{[\mathrm{HA}]}{\mathrm{Log}\left[\mathrm{A}^{-}\right]}$
2) $\mathrm{CH}_{3} \mathrm{COOH} \longleftrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}$
3) Find pH
4) $\mathrm{pK}=4.76 \quad \mathrm{~A}^{-}=0.1 \mathrm{M} \quad \mathrm{HA}=0.9 \mathrm{M}$
5) Already at equilibrium
6) $4.76+\log \frac{0.1}{0.9} \quad$
6og $0.111=-.95 \quad \mathrm{X}=4.76+(-.95) \quad \mathrm{X}=3.81$
```
What would the concentration of \(\mathrm{CH}_{3} \mathrm{C} 00^{-}\)be at pH 5.3
    if \(0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{C} 00 \mathrm{H}\) was adjusted to that pH .
1) \(\mathrm{pH}=\mathrm{pK}+\log [\mathrm{A}]\)
    \(\mathrm{CH}_{3} \mathrm{COOH} \xrightarrow{[\mathrm{HA}]} \mathrm{CH}_{3} \mathrm{COO}+\mathrm{H}^{+}\)
    Find equilibrium value of \([\mathrm{A}-]\) i.e \(\left[\mathrm{CH}_{3} \mathrm{CO}^{-}\right.\)]
    \(\mathrm{pH}=5.3 ; \mathrm{pK}=4.76\)
    Let \(\mathrm{X}=\) amount of \(\mathrm{CH}_{3} \mathrm{COOH}\) dissociated at equilibrium
                                    [ \(\mathrm{A}^{-}\)] \(=[\mathrm{X}]\)
                    \([\mathrm{HA}]=[0.1-\mathrm{X}]\)
6) \(5.3=4.76+\log [\mathrm{X}]\)
    [0.1-X]
    Now solve.
```


