

$$K_{a} = K[H_{2}O] = \frac{[H^{+}][A^{-}]}{[HA]} \bigstar$$
From now on we will drop the a, in K_a
Weak acids (K<1)
Strong acids (K>1)
Strong acid completely dissociates: Transfers all its protons to
H₂O to form H₃O⁺
HA \longrightarrow H⁺ + A⁻

[H ⁺]		pН			
10-7	=	7			
10-3	=	3			
10-2	=	2	pН	=	-Log[H ⁺]
10-10	=	10			
5x10-4	=	3.3			
7x10 ⁻⁶	=	5.15			
3.3x10 ⁻⁸	=	7.48			

Substance	pH
1 M NaOH	14
Household ammonia	12
Seawater	8
Blood	7.4
Milk	7
Saliva	6.6
Tomato juice	4.4
Vinegar	3
Gastric juice	1.5
1 M HCl	0

Buffers

A buffer can resist pH changes if the pH is at or near a its pK.

Buffer range: the pH range where maximum resistance to pH change occurs when adding acid or base. It is $=\pm 1$ pH from the weak acid pK

If pK is 4.8 the buffering range is 3.8 to 5.8

Why?

Acid	K	рК
Oxalic acid	5.37×10^{-2}	1.27 (pK ₁)
H ₃ PO ₄	7.08×10^{-3}	2.15 (pK1)
Formic acid	1.78×10^{-4}	3.75
Succinic acid	6.17×10^{-5}	4.21 (pK1)
Oxalate ⁻	5.37×10^{-5}	4.27 (pK2)
Acetic acid	1.74×10^{-5}	4.76
Succinate"	2.29×10^{-6}	5.64 (pK2)
2-(N-Morpholino)ethanesulfonic acid (MES)	8.13×10^{-7}	6.09
H-CO ₃	4.47×10^{-7}	6.35 (pK1)"
Piperazine-N,N'-bis(2-ethanesulfonic acid) (PIPES)	1.74×10^{-7}	6.76
H ₂ PO ₄	1.51×10^{-7}	6.82 (pK2)
3-(N-Morpholino)propanesulfonic acid (MOPS)	7.08×10^{-8}	7.15
N-2-Hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES)	3.39×10^{-8}	7.47
Tris(hydroxymethyl)aminomethane (Tris)	8.32×10^{-9}	8.08
NH [*]	5.62×10^{-10}	9.25
Glycine (amino group)	1.66×10^{-10}	9.78
HCO3	4.68×10^{-11}	10.33 (pK2)
Piperidine	7.58×10^{-12}	11.12
HPO ²	4.17×10^{-13}	12.38 (pK ₃)

Blood Buffering System

- Bicarbonate most significant buffer
- Formed from gaseous CO₂

$$CO_2 + H_2O \longrightarrow H_2CO_3$$

$$H_2CO_3 \longleftrightarrow H^+ + HCO_3$$

- Normal value blood pH 7.4
- Deviations from normal pH value lead to acidosis

Henderson - Hasselbalch type problems:

$$pH = pK + \log \frac{[A^{-}]}{[HA]}$$

You may be asked the pH, pK, the ratio of acid or base or solve for the final concentrations of each.

The <u>6</u> step approach

- 1. Write the Henderson + Hasselbalch equation.
- 2. Write the acid base equation
- 3. Make sure either an H^+ or OH^- is in the equation.
- 3. Find out what you are solving for
- 4. Write down all given values.
- 5. Set up equilibrium conditions.
- 6. Plug in H + H equation and solve.

What is the pH of a solution of that contains 0.1M $CH_{3}COO^{-} \text{ and } 0.9 \text{ M CH}_{3}COO\text{H}?$ 1) pH = pK + Log [A⁻] [HA] 2) CH_{3}COOH \longrightarrow CH_{3}COO^{-} + H^{+} 3) Find pH 4) pK = 4.76 A⁻ = 0.1 M HA = 0.9 M 5) Already at equilibrium 6) X = 4.76 + Log <u>0.1</u> 0.9 Log 0.111 = -.95 X = 4.76 + (-.95) X = 3.81

Wh	at would the concentration of CH_3C00° be at pH 5.3 if 0.1M CH_3C00H was adjusted to that pH.
1)	$pH = pK + Log [\underline{A}]$
	[HA]
2)	$CH_{3}C00H$ $CH_{3}C00^{-} + H^{+}$
3)	Find equilibrium value of [A ⁻] i.e [CH ₃ C00 ⁻]
4)	pH = 5.3; pK = 4.76
5)	Let $X =$ amount of CH ₃ C00H dissociated at equilibrium
	$[A^{-}] = [X]$
	[HA] = [0.1 - X]
6)	5.3 = 4.76 + Log [X] [0.1 - X]
	Now solve.

