Amino Acids
$(9 / 08 / 2009)$

1. What are Amino Acids, and what is their 3-D structure?
2. What are the structures \& properties of the individual amino acids?
3. What is the peptide bond?
4. Do amino acids have specific Acid-Base properties?
5. Are small peptides physiologically active?

Amino Acids
 The building blocks of proteins

\qquad
α-amino acids because of an amino group next to the $\mathrm{C} \alpha$
\mathbf{R} group - determines the identity of the particular amino acid
Stereochemistry - important property

$\mathrm{pK}_{1} \approx 2.2$ while $\mathrm{pK}_{2} \approx 9.4, \mathrm{pK}_{\mathrm{R}}$ for R group pK 's
In the physiological pH range, both NH_{2} and COOH are completely ionized
They can act as either an acid or a base
They are Zwitterions, molecules having charged groups of opposite polarity

Because of their ionic nature they have extremely high melting temperatures

Classification and Characteristics of Amino Acids
R polarity: three main categories to describe amino acids:

1) Non polar "hydrophobic" nine in all

Glycine, Alanine, Valine, Leucine, Isoleucine, Methionine, Proline, Phenylalanine and Tryptophan
2) Uncharged polar, six in all

Serine, Threonine, Asparagine, Glutamine, Tyrosine, Cysteine
3) Charged polar, five in all

Lysine, Arginine, Glutamic acid, Aspartic acid, and Histidine

Amino Acids

You must know:

Their names
Their structure
Their three letter code
Their one letter code
$\underset{\substack{ \\\mathrm{H}-\mathrm{C}-\mathrm{CH}_{2}-\\ \mathrm{N} \mathrm{NH}_{3}}}{\mathrm{COO}^{-}} \bigcirc-\mathrm{OH}$ Tyrosine, Tyr, Y, aromatic, hydroxyl

Color conventions

Linear arrays of amino acids can make a huge number of molecules

Consider a peptide with two amino acids

AA1	AA2
20	x 20

$A A 1-A A 2-A A 3$

$20 \times 20 \times 20=8000$ different molecules
For 100 amino acid protein the \# of possibilities are:

$$
20^{100}=1.27 \times 10^{130}
$$

The total number of atoms in the universe is estimated at 9×10^{78}

Nomenclature

The tetrapeptide Ala-Tyr-Asp-Gly or AYDG

Greek lettering used to identify atoms in lysine or glutamate

Acid - Base properties of amino acids

$\mathrm{pH}=\mathrm{pK}+\log \left(\frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}\right)$
Isoelectric point: the
pH where a protein carries no net electrical charge

For a monoamino-monocarboxylic residue
$\mathrm{pKi}=\mathrm{pK}_{1}$ and $\mathrm{pKj}=\mathrm{pK}_{2}$;
For D and $\mathrm{E}, \mathrm{pKi}=\mathrm{pK}_{1}$ and $\mathrm{pKj}-\mathrm{pK}_{\mathrm{R}}$;
For R, H and $\mathrm{K}, \mathrm{pKi}=\mathrm{K}_{\mathrm{R}}$ and $\mathrm{pKj}=\mathrm{pK}_{2}$

An example of an amino acid with
two asymmetric carbons

(S)Glyceraldehyde (S)-Glyceraldehyde

All naturally occurring amino acids that make up proteins are in the L conformation

In the Fischer projection all bonds in the horizontal direction is coming out of the plane of the paper, while the vertical bonds project behind the plane of the paper

Cahn - Ingold - Prelog system

Can give absolute configuration nomenclature to multiple chiral centers.

Priority

Atoms of higher atomic number bonded to a chiral center are ranked above those of lower atomic number with lowest priority away from you Rhighest to lowest = clockwise, Shighest to lowest = counterclockwise
$\mathrm{SH}>\mathrm{OH}>\mathrm{NH}_{2}>\mathrm{COOH}>\mathrm{CHO}>\mathrm{CH}_{2} \mathrm{OH}>\mathrm{C}_{6} \mathrm{H}_{5}>\mathrm{CH}_{3}>\mathrm{H}$

Biologically Active Amino Acids

O2006 shon Whey 4 Soms
\qquad

Questions:

1. For the dipeptide Tyr-Asp, find $\boldsymbol{p I}$ (the pKs are α-amino 9.2, phenolic 10.5, β-carboxylate 3.9, α-carboxylate 2.0).
2. For the dipeptide Lys-Glu, find $\boldsymbol{p I}$ (the pKs are α-amino 9.1, ε-amino 10.5, γ-carboxylate 4.1, α-carboxylate 2.1).

Side Chain Modifications in Proteins

O-Phosphoserine

$$
\gamma \text {-Carboxyglutamate } \quad 4 \text {-Hydroxyproline }
$$

Oxidation and Reduction of Glutathione

Lecture 6

Thursday 9/10/09
Amino Acids

