

Chapter 4	Name. Three-letter Symbol. Structural and One-letter Symbol. Permita'	Hereduc Mare (D) ⁴	Average Occurrences in Proteins (%)	pK, a-COOH*	pK) #NHT*	pK ₀ Jide Chair ⁴
(1)	Antine arish with nonpolar sole chains Glycase COOT Gly H = C = H none	57.8	12	1.35	9,78	
	A Aberian COO-	71.1	7.8	2.8	9,87	
,	V = v	91.1	6.6	2.29	9,74	
1	$ L = \begin{bmatrix} Lossies & COO^* & CD_1 \\ L & H - C - CD_1 - CD_1 \\ song & CD_1 \end{bmatrix} $	1032	- 9.1	2.03	0.74	
1	$\begin{bmatrix} 1_{00} \\ 1_{0} \\ 1 \end{bmatrix} = \begin{bmatrix} 000^{-1} & (10_{1}) \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 000^{-1} & (10_{1}) \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 000^{-1} & (10_{1}) \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 000^{-1} & (10_{1}) \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 000^{-1} & (10_{1}) \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 000^{-1} & (10_{1}) \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 000^{-1} & (10_{1}) \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 000^{-1} & (10_{1}) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 000^{-1} & (10_{1}) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 000^{-1} & (10_{1}) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	102	53	2.32	9.76	
1	$M = \begin{array}{c} M_{H} & 0 \\ M_{H} & 0 \\ M & 0 \end{array} = \begin{array}{c} 0 \\ - 0 \\ $	101.2	22	2.0	9.29	
I	P P Street	87.1	32	1.95	35.64	
1	F Providence COV Prov = - C-CH2 Net	147.2	3.9	2.20	9.31	
	W Transform H-C-CHAPTER	196.2	3.4	2.46	9.41	

Atoms of higher atomic number bonded to a chiral center are ranked above those of lower atomic number with lowest priority away from you R highest to lowest = clockwise, **S** highest to lowest = counterclockwise

SH>OH>NH₂>COOH>CHO>CH₂OH>C₆H₅>CH₃>H

1 2 3 4 5	6 7 8 9 10 11 12 13 14 15				
H ₃ N ⁺	COO				
	A- <u>T</u>				
	F - M - A - <u>T</u>				
	A- K - F - M				
Q - M - A - K					
D - I - K - Q - M					
G - M - D - I - K					
Y - R - G - M					
Y - R					
Cyanogen Bromide	Trypsin cleaves after K or R				
(CNBr) Cleaves after	(positively charged amino				
Met i.e M - X	acids)				
D - I - K - Q - M	Q - M - A - K				
A - <u>T</u>	G - M - D - I - K				
A - K - F - M	F - M - A - <u>T</u>				
Y - R - G - M	Y - R				

Protein Evolution

Species variation in homologous proteins

The primary structures of a given protein from related species closely resemble one another. If one assumes, according to evolutionary theory, that related species have evolved from a common ancestor, it follows that each of their proteins must have likewise evolved from the corresponding ancestor.

A protein that is well adapted to its function, that is, one that is not subject to significant physiological improvement, nevertheless continues to evolve.

Neutral drift: changes not effecting function

Homologous proteins

(evolutionarily related proteins)

Compare protein sequences:

Conserved residues, i.e invariant residues reflect chemical necessities.

Conserved substitutions, substitutions with similar chemical properties (Asp for Glu), (Lys for Arg), (Ile for Val)

Variable regions, no requirement for chemical reactions etc.

Evolution through gene duplication

- Many proteins within an organism have sequence similarities with other proteins.
- •These are called gene or protein families.
- •The relatedness among members of a family can vary greatly.
- •These families arise by gene duplication.
- •Once duplicated, individual genes can mutate into separate genes.
- •Duplicated genes may vary in their chemical properties due to mutations.
- •These duplicate genes evolve with different properties.
- •Example the globin family.

The globin family history

- 1. Primordial globin gene acted as an Oxygen-storage protein.
- 2. Duplication occurred 1.1 billion years ago. lower oxygen-binding affinity, monomeric protein.
- 3. Developed a tetrameric structure two α and two β chains increased oxygen transport capabilities. $(\alpha_2\beta_2)$.
- 4. Mammals have fetal hemoglobin with a variant β chain i.e. $\gamma(\alpha_2\gamma_2)$.
- 5. Human embryos contain another hemoglobin $(\zeta_2\epsilon_2).$
- 6. Primates also have a δ chain with no known unique function. ($\alpha_2\delta_2).$

Lecture 8

(9/17/2009)

Chapter 6 - Proteins: 3-D structure 6-1. Secondary Structure