Proteins: 3D-Structure

Chapter 6
(9 / 17/ 2009)

Secondary Structure
-The peptide group
-Alpha helices and beta sheets
-Nomenclature of protein secondary structure

Tertiary Structure

Three Dimensional Protein Structures

Conformation: Spatial arrangement of atoms that depend on bonds and bond rotations.

Proteins can change conformation, however, most proteins have a stable "native" conformation.

The native protein is folded through weak interactions:
a) Hydrophobic interactions
b) Hydrogen-bonds
c) Ionic interactions
d) Van der Waals attractions

There are four levels of protein structure

1. Primary structure
$1^{\circ}=$ Amino acid sequence, the linear order of AA's.
Remember from the N-terminus to the C-terminus Above all else this dictates the structure and function of the protein.
2. Secondary structure
$2^{\circ}=$ Local spatial alignment of amino acids without regard to side chains.
Usually repeated structures
Examples: α-helix, β-sheets, random coil, or β-turns
3. Tertiary Structure
$3^{\circ}=$ the 3-dimensional structure of an entire peptide.
Great in detail but vague to generalize. Can reveal the detailed chemical mechanisms of an enzyme.
4. Quaternary Structure
4° two or more peptide chains associated with a protein.

Spatial arrangements of subunits.

The Amide bond

In 1930s-1940s Linus Pauling and Robert Corey determined the structure of the peptide bond by X-ray.

40% double bond character. The amide bond or peptide bond $\mathrm{C}-\mathrm{N}$ bond is $0.13 \AA$ shorter than $\mathrm{C}_{\alpha-\mathrm{N}}$ bond.
$\mathrm{C}=\mathrm{O}$ is $.02 \AA$ longer then those for ketones and aldehydes
Planar conformation maximizes pi-bonding overlap
Resonance gives $85 \mathrm{~kJ} / \mathrm{mol}$ stability when bond is planar!!

Resonance energy depends on dihedral/torsional angle ($\mathrm{C} \alpha-\mathrm{C}-\mathrm{N}-\mathrm{C} \alpha$) For peptides, this is the angle between the $\mathrm{C} \alpha-\mathrm{C}$ and $\mathrm{N}-\mathrm{C} \alpha$ bonds For a trans peptide bond, the dihedral angle is 180° by definition. In a cis peptide bond, the dihedral angle is 0° by definition.
Most peptide bonds are trans, 10% that follow proline may be cis Note: differences between bond angles and bond lengths comparing cis and trans forms of a generic dipeptide.

When viewed down the $\mathrm{C} \alpha-\mathrm{N}$ axis, rotation to the right or clock wise increases the angle of rotation.

Must start with the fully extended form which is defined as 180° or -180°

Ethane can exist as staggered or eclipsed conformation

Staggered

gauche

There is a $12 \mathrm{~kJ} / \mathrm{mol}$ penalty in energy for an eclipsed geometry
Bulky amino acid side chains have a much higher energy penalty. There are a few favored geometries which the protein backbone can fold

If all $\phi+\psi$ angles are defined then the backbone structure of a protein will be known!!

These angles allow a method to describe the protein's structure and all backbone atoms can be placed in a 3D-grid with an X, Y, Z coordinates.

The α-helix

The most favorable Φ and Ψ angles with little steric hindrance. Forms repeated hydrogen-bonds.
$\sim \mathrm{N}=3.6$ residues per turn
K $\mathrm{P}=5.4 \AA$ (What is the d for an α-helix?) $\mathrm{d}=\mathrm{p} / \mathrm{n}=5.4 \AA / 3.6=1.5$
The $\mathrm{C}=\mathrm{O}$ of the $\mathrm{n}^{\text {th }}$ residue points towards the $\mathrm{N}-\mathrm{H}$ of the $(\mathrm{N}+4)^{\text {th }}$ residue.

The \mathbf{N}.............. H \qquad O hydrogen-bond is $2.8 \AA$
and the atoms are 180° in plane. This is almost optimal with favorable Van der Waals interactions within the helix.

The 2.2 ${ }_{7}$ Ribbon

-Atom (1) -O- hydrogen-bonds to the 7th atom in the chain with an $\mathrm{N}=2.2$ (2.2 residues per turn)
3_{10}-helix
-Atom (1) - O - hydrogen-bonds to the 10 th residue in the chain with an $\mathrm{N}=3$.

- Pitch = 6.0 Å occasionally observed but torsion angles are slightly forbidden. Seen as a single turn at the end of an α-helix.
- П-helix $4.4_{16} 4.4$ residues per turn. Not seen!!

The \mathbf{N}_{m} nomenclature for helices

$\mathrm{N}=$ the number of repeating units per turn
M = the number of atoms that complete the cyclic system that is enclosed by the hydrogen bond.

Beta structures

-Hydrogen-bonding between adjacent peptide chains. - Almost fully extended but have a buckle or a pleat. Much like a Ruffles potato chip
Two types
Parallel Antiparallel
$\mathrm{N} \longrightarrow \mathrm{C}$

$7.0 \AA$ between pleats on the sheet
Widely found pleated sheets exhibit a right-handed twist, seen in many globular proteins.

Two proteins exhibiting a twisting β sheet

The twist is due to chiral L-amino acids in the extended plane.
This chirality gives the twist and distorts \mathbf{H}-bonding.
A little tug of war exists between conformational energies of the side chain and maximal H -bonding.
These structures are not "static" but breathe and vibrate with a change in structure due to external circumstances.
Bovine carboxypeptidase
a

Triose phosphate isomerase

Connections between adjacent β sheets

