

Compound Name	Streetary"	Functional Group or Linkage
Ainim [#]	RNH ₁ = RNH ₁ RNH = RNH ₁ RN = RNH ₁	
Abriled	NOM	Off Hashward around
Thed	10.521	Mi (mithedrif group)
Ethat	ROB	-O- (athat linkage)
Alphotysia	8-4-1	(respecial facela)
	8	7
artures:	8-6-8	
Carbonchi and	R-2-04100 R-2-0'	-U-cer (comoved group) or
		1
		-c-o. Impositus bosh
	8	1
Cerr .	8-6-08	-C-O- (solar linkage) R-C- (and group?
	9	9
Disouter	R-5-18.	-c-t- (finante linkage) a-c- (aryl group
	9	
Amile	8-2-105	
	9	9 9
	8-6-108	-C-SC (amile group) R-C- (and group?
	9	
	8-4-18,	
linine (Schiff Inee)*	Ro-NEL or R-NIL	Control or Control Control prospit
	R-NR = R-NIR	
Disaliliate	R-5-5-8	-S-S- (doublide linkage)
	0	9
Photophasis onion"	8-0-0-0	- P ()* . (pleophort) group)
		the second s
	0 0	0.0
	and all a	I a Lor and a second
coloreduced term.	0-0-0-0-0-0	
	0. 04	0.01
Phosphatu dicelar"	8-0-0-0-0-8	-c1-F-(I- (phosphishouse hakape)
	1.61	úr.

Gibb's Free Energy

- Is a state function (a property of a system that depends only on the current state of the system *and not its history*)
- Gibb's Free Energy is determined at constant *T* and *P*:

$$G = H - TS$$
$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

• The **Gibbs free energy** (*G*) of a <u>system</u> is defined by an **enthalpy term** (*H*) (change of the total energy with the system), and the **entropy term** (*S*) (change in the disorder) at **temperature** (*T*)

Key to structure	Name. Three letter Symbol. Structural and One-letter Symbol. Evenuite"	Residue Average Mass Occurrents (D) ⁴ in Proteins (%)	pK, a-COOH*	$\frac{e^{K_{j}}}{e^{-NH_{j}^{-2}}}$	pKa Jule Chatr ⁴
(1) G	$\begin{array}{llllllllllllllllllllllllllllllllllll$	<i>918</i> 12	1.15	9.76	
А	Abrian COO- Abr A H-C-Ob, A SHE	71.1 7.8	2.8	9,87	
v	Value COO ⁺ CH ₀ Value R=C-OI V R=C-OI	98.) 6.A	2.29	9,74	
L	$ \begin{array}{c} coor \\ coir \\ c$	1132 9.1	2.03	- 9.74	
Ι	$ \begin{array}{cccc} & & & & & \\ & & & & \\ & & & \\ & & & \\ I & & & \\ & & & \\ I & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$	102 53	2.32	9.76	
М	$\begin{array}{llllllllllllllllllllllllllllllllllll$	131.2 2.2	2.0	9.28	
Р	Protection Contraction	97.3 3.2	1.95	35.54	
F	Persyldenia: Par F II-C-Olg-OD	347.2 3.9	2.30	9.31	
W	$ \overset{Trystephen}{\underset{W}{\overset{D}{W}}} \overset{COO^{*}}{\underset{SHI}{\overset{COO^{*}}{\overset{U}{\underset{W}{\overset{U}{\underset{W}{\overset{U}{\underset{W}{\overset{U}{\underset{W}{\overset{U}{\underset{W}{\underset{W}{\overset{U}{\underset{W}{\overset{U}{\underset{W}{\overset{U}{\underset{W}{\overset{U}{\underset{W}{\underset{W}{\overset{U}{\underset{W}{\underset{W}{\overset{U}{\underset{W}{\overset{U}{\underset{W}{\overset{U}{\underset{W}{\underset{W}{\overset{U}{\underset{W}{\overset{U}{\underset{W}{\overset{U}{\underset{W}{\underset{W}{\overset{U}{\underset{W}{\overset{U}{\underset{W}{\underset{W}{\overset{U}{\underset{W}{\overset{U}{\underset{W}{\overset{U}{\underset{W}{\underset{W}{\overset{U}{\underset{W}{\underset{W}{\overset{U}{\underset{W}{\underset{W}{\overset{U}{\underset{W}{\underset{W}{\overset{U}{\underset{W}{\underset{W}{\underset{W}{\overset{U}{\underset{W}{\underset{W}{\underset{W}{\underset{W}{\underset{W}{\underset{W}{\overset{U}{\underset{W}{\underset{W}{\underset{W}{\underset{W}{\underset{W}{\underset{W}{\underset{W}{\underset$	16.2 1.4	2.46	9.43	

